Pullbacks of Siegel Eisenstein Series and Critical L-values

Nadine Amersi, Allison Proffer, and Larry Rolen

July 6, 2010

L-functions generalize the Riemann Zeta function

- L-functions generalize the Riemann Zeta function
- For a Dirichlet character χ , s > 1, $L(s,\chi) := \sum_{n=1}^{\infty} \chi(n) n^{-s}$

- L-functions generalize the Riemann Zeta function
- For a Dirichlet character χ , s > 1, $L(s,\chi) := \sum_{n=1}^{\infty} \chi(n) n^{-s}$
- ► Euler Product: $L(s,\chi) = \prod_{p \text{ prime}} (1 \chi(p)p^{-s})^{-1}$

- L-functions generalize the Riemann Zeta function
- For a Dirichlet character χ , s>1, $L(s,\chi):=\sum_{n=1}^{\infty}\chi(n)n^{-s}$
- ► Euler Product: $L(s,\chi) = \prod_{p \text{ prime}} (1 \chi(p)p^{-s})^{-1}$
- ▶ Dirichlet's Theorem on arithmetic progressions: non-vanishing of $L(1,\chi)$.

 \blacktriangleright Modular forms are functions from $\mathfrak{h} \to \mathbb{C}$

- lacktriangle Modular forms are functions from $\mathfrak{h} \to \mathbb{C}$
- Fourier Expansion: $f(z) = \sum_{n \gg -\infty}^{\infty} a(n)q^n$, $q := e^{2\pi i z}$

- lacktriangle Modular forms are functions from $\mathfrak{h} \to \mathbb{C}$
- Fourier Expansion: $f(z) = \sum_{n \gg -\infty}^{\infty} a(n)q^n$, $q := e^{2\pi i z}$
- Fourier coefficients are often arithmetic functions of interest

- ▶ Modular forms are functions from $\mathfrak{h} \to \mathbb{C}$
- Fourier Expansion: $f(z) = \sum_{n \gg -\infty}^{\infty} a(n)q^n$, $q := e^{2\pi i z}$
- Fourier coefficients are often arithmetic functions of interest

- lacktriangle Modular forms are functions from $\mathfrak{h} \to \mathbb{C}$
- Fourier Expansion: $f(z) = \sum_{n \gg -\infty}^{\infty} a(n)q^n$, $q := e^{2\pi i z}$
- ► Fourier coefficients are often arithmetic functions of interest
- ▶ By Euler's identity, $\sum_{n=1}^{\infty} p(n)q^{24n-1} = \frac{1}{\eta(24z)}$

L-functions again

$$L(s,f) := \sum_{n=1}^{\infty} a(n)n^{-s}$$

L-functions again

$$L(s,f) := \sum_{n=1}^{\infty} a(n)n^{-s}$$

► Hecke eigenforms have Euler products

L-functions again

$$L(s,f) := \sum_{n=1}^{\infty} a(n) n^{-s}$$

- ► Hecke eigenforms have Euler products
- ▶ Analytic continuation to ℂ, functional equations, etc.

Siegel Upper Half-Space:

$$\mathfrak{h}^n := \{Z \in \mathsf{Mat}_n(\mathbb{C}) | \ ^tZ = Z, Z = X + iY, Y > 0\}$$

Siegel Upper Half-Space:

$$\mathfrak{h}^n := \{Z \in \mathsf{Mat}_n(\mathbb{C}) | \ ^tZ = Z, Z = X + iY, Y > 0\}$$

► Group action: For $\gamma \in \operatorname{Sp}_{2n}(\mathbb{Z})$, $\gamma \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$.

Siegel Upper Half-Space:

$$\mathfrak{h}^n := \{Z \in \mathsf{Mat}_n(\mathbb{C})|\ ^tZ = Z, Z = X + iY, Y > 0\}$$

- ▶ Group action: For $\gamma \in \operatorname{Sp}_{2n}(\mathbb{Z})$, $\gamma \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$.
- ▶ Modularity: $f(\gamma z) = \det(CZ + D)^k f(Z)$

Siegel Upper Half-Space:

$$\mathfrak{h}^n := \{Z \in \mathsf{Mat}_n(\mathbb{C})|\ ^tZ = Z, Z = X + iY, Y > 0\}$$

- ▶ Group action: For $\gamma \in \operatorname{Sp}_{2n}(\mathbb{Z})$, $\gamma \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$.
- ▶ Modularity: $f(\gamma z) = \det(CZ + D)^k f(Z)$
- Fourier Expansion: $f(Z) = \sum_{T \ge 0, T \in \Lambda} a(T)e^{2\pi i \operatorname{tr}(TZ)}$

Siegel Upper Half-Space:

$$\mathfrak{h}^n := \{Z \in \mathsf{Mat}_n(\mathbb{C})|\ ^tZ = Z, Z = X + iY, Y > 0\}$$

- ▶ Group action: For $\gamma \in \operatorname{Sp}_{2n}(\mathbb{Z})$, $\gamma \cdot Z := (AZ + B) \cdot (CZ + D)^{-1}$.
- ▶ Modularity: $f(\gamma z) = \det(CZ + D)^k f(Z)$
- Fourier Expansion: $f(Z) = \sum_{T \ge 0, T \in \Lambda} a(T)e^{2\pi i \operatorname{tr}(TZ)}$
- ▶ n = 1 corresponds to modular forms

► Classical Language: $E_{n,k}(z) := \sum_{\gamma \in \mathsf{P}_{2n,0}(\mathbb{Q}) \setminus \mathsf{Sp}_{2n}(\mathbb{Q})} j(\gamma,z)^{-k}$

- ► Classical Language: $E_{n,k}(z) := \sum_{\gamma \in \mathsf{P}_{2n,0}(\mathbb{Q}) \setminus \mathsf{Sp}_{2n}(\mathbb{Q})} j(\gamma,z)^{-k}$
- ▶ Lift to adeles: $Sp_n(\mathbb{A}_{\mathbb{Q}})$

- ► Classical Language: $E_{n,k}(z) := \sum_{\gamma \in \mathsf{P}_{2n,0}(\mathbb{Q}) \setminus \mathsf{Sp}_{2n}(\mathbb{Q})} j(\gamma,z)^{-k}$
- ▶ Lift to adeles: $Sp_n(\mathbb{A}_{\mathbb{Q}})$
- ▶ Pulbacks: Restrict to embedded copies of smaller groups

- $lackbox{ Classical Language: } E_{n,k}(z) := \sum_{\gamma \in \mathsf{P}_{2n,0}(\mathbb{Q}) \setminus \mathsf{Sp}_{2n}(\mathbb{Q})} j(\gamma,z)^{-k}$
- ▶ Lift to adeles: $Sp_n(\mathbb{A}_{\mathbb{Q}})$
- Pulbacks: Restrict to embedded copies of smaller groups
- ► Fourier coefficients involve *L*-functions, generalized class numbers, etc.

An interesting identity

 \triangleright \mathcal{B}_k : basis of normalized, cusp eigenforms

An interesting identity

▶ \mathcal{B}_k : basis of normalized, cusp eigenforms

An interesting identity

▶ \mathcal{B}_k : basis of normalized, cusp eigenforms

For $k \in \{12, 16, 18, 20, 22\}$, $\dim(S_k) = 1$

Table: Values of α_k

```
\begin{array}{|c|c|c|c|c|c|}\hline k & \alpha_k \\ k=12 & (2^{31}\cdot\pi^{33})/(3^6\cdot 5^3\cdot 7^3\cdot 11^2\cdot 13\cdot 17\cdot 19\cdot 23\cdot 691) \\ k=14 & 0 \\ k=16 & (2^{40}\cdot\pi^{45})/(3^{13}\cdot 5^6\cdot 7^3\cdot 11^2\cdot 13^2\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 3617) \\ k=18 & (2^{37}\cdot\pi^{51})/(3^{12}\cdot 5^5\cdot 7^5\cdot 11^3\cdot 13^2\cdot 17^2\cdot 19\cdot 23\cdot 29\cdot 31\cdot 43687) \\ k=20 & (2^{39}\cdot\pi^{57})/(3^{17}\cdot 5^7\cdot 7^3\cdot 11^2\cdot 13^2\cdot 17^2\cdot 19^2\cdot 29\cdot 31\cdot 37\cdot 283\cdot 617) \\ k=22 & (2^{42}\cdot 4409\cdot\pi^{63})/(3^{21}\cdot 5^8\cdot 7^5\cdot 11^3\cdot 13^2\cdot 17^2\cdot 19^2\cdot 23\cdot 29\cdot 31\cdot 37\cdot 41\cdot 131\cdot 593) \\ \end{array}
```

 Geometric algebra: Double coset decompositions, isotropy subgroups

- Geometric algebra: Double coset decompositions, isotropy subgroups
- Split up defining sum of Eisenstein pullback

- Geometric algebra: Double coset decompositions, isotropy subgroups
- Split up defining sum of Eisenstein pullback
- Properties of embedding: Identify first part as product of lower degree Eisenstein series

- Geometric algebra: Double coset decompositions, isotropy subgroups
- Split up defining sum of Eisenstein pullback
- Properties of embedding: Identify first part as product of lower degree Eisenstein series
- Choose convenient basis, use inner product formula due to Shimura

$$E_{k}^{*}(z, w) = E_{1,k}(z)E_{2,k}(w) + c_{k} \sum_{f \in \mathcal{B}_{k}} \frac{L(k-1, f, St)}{\langle f, f \rangle} f(z) (E_{1,k}^{2}(f))^{c}(w)$$

- $E_{k}^{*}(z, w) = E_{1,k}(z)E_{2,k}(w) + c_{k} \sum_{f \in \mathcal{B}_{k}} \frac{L(k-1, f, \mathsf{St})}{\langle f, f \rangle} f(z)(E_{1,k}^{2}(f))^{c}(w)$
- ▶ Restrict again, look at $q_1q_2q_3$ term of Fourier expansion

- $E_{k}^{*}(z, w) = E_{1,k}(z)E_{2,k}(w) + c_{k} \sum_{f \in \mathcal{B}_{k}} \frac{L(k-1, f, St)}{\langle f, f \rangle} f(z)(E_{1,k}^{2}(f))^{c}(w)$
- ▶ Restrict again, look at $q_1q_2q_3$ term of Fourier expansion
- ightharpoonup Characterize generalized Eisenstein series for cusp forms as Sigel Φ operator lift

- $\begin{array}{l} E_k^*(z, w) = \\ E_{1,k}(z)E_{2,k}(w) + c_k \sum_{f \in \mathcal{B}_k} \frac{L(k-1, f, \mathsf{St})}{\langle f, f \rangle} f(z) (E_{1,k}^2(f))^c(w) \end{array}$
- ▶ Restrict again, look at $q_1q_2q_3$ term of Fourier expansion
- \blacktriangleright Characterize generalized Eisenstein series for cusp forms as Sigel Φ operator lift
- ▶ 5 contributing terms, 2 are unimodularly equivalent to $\begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$

- $\begin{array}{l} E_k^*(z, w) = \\ E_{1,k}(z)E_{2,k}(w) + c_k \sum_{f \in \mathcal{B}_k} \frac{L(k-1, f, \mathsf{St})}{\langle f, f \rangle} f(z) (E_{1,k}^2(f))^c(w) \end{array}$
- ▶ Restrict again, look at $q_1q_2q_3$ term of Fourier expansion
- Characterize generalized Eisenstein series for cusp forms as Sigel Φ operator lift
- ▶ 5 contributing terms, 2 are unimodularly equivalent to $\begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$
- ► det(2T) is a fundamental discriminant for the other 3, formula of Mizumoto applies.

▶ Siegel modular forms are generalizations of modular forms.

- ▶ Siegel modular forms are generalizations of modular forms.
- Associated L-values are related to many analytic number theory problems.

- Siegel modular forms are generalizations of modular forms.
- Associated L-values are related to many analytic number theory problems.
- L-value averages can be obtained by studying pullbacks of Eisenstein series

- ► Siegel modular forms are generalizations of modular forms.
- Associated L-values are related to many analytic number theory problems.
- ► L-value averages can be obtained by studying pullbacks of Eisenstein series
- ► Can be used to find new congruences for arithmetic functions, e.g. Ramanujan tau function.

- ► Siegel modular forms are generalizations of modular forms.
- Associated L-values are related to many analytic number theory problems.
- ► L-value averages can be obtained by studying pullbacks of Eisenstein series
- Can be used to find new congruences for arithmetic functions,
 e.g. Ramanujan tau function.
- ► Further problems: Higher degree, arbitrary level

- Siegel modular forms are generalizations of modular forms.
- Associated L-values are related to many analytic number theory problems.
- ► L-value averages can be obtained by studying pullbacks of Eisenstein series
- ► Can be used to find new congruences for arithmetic functions, e.g. Ramanujan tau function.
- ► Further problems: Higher degree, arbitrary level
- ► Hilbert modular forms: Much of the theory carries through in general (totally real) number fields

