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Common question

Question

Given a sequence of numbers a0, a1, . . ., how quickly does an grow?

A few (of many) examples:

Integer partitions/partition statistics

Knot invariants (e.g.: Volume Conjecture)

Hodge numbers of Hilbert schemes

States of black holes
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Conjectures of Andrews on partition-theoretic q-series

Unreasonable effectiveness of modular forms

General idea: form generating functions f (q) :=
∑

n anq
n.

If we’re “lucky,” modularity properties of f (q) can be used to
give asymptotics for an.

Often not a modular form. If we’re flexible about modularity,
many more examples arise; this is often “good enough” for
asymptotics. E.g.: Mirror symmetry often yields “almost
modular” functions.

Don Zagier: Modular forms are everywhere.

Two Way Street

Studying asymptotics of varied objects gives hints of novel
modularity, leading to new number theory. Conversely, the number
theory can prove new results in the other field.
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What are modular forms?

Functions on H := {τ ∈ C : Im(τ) > 0}.

Slash action: f |kγ(τ) := (cτ + d)−k f ((aτ + b)/(cτ + d)).

Modularity:
1 f |kγ = f ∀γ ∈ Γ ≤ SL2(Z).
2 + growth conditions (classical: holomoprhic at “cusps”)
3 + analytic conditions (classical: holomorphic)

New Quanta article: https://tinyurl.com/vv8mcjuw

“Algebra” of adjectives: weakly, quasi, meromorphic, almost...

https://tinyurl.com/vv8mcjuw
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Modularity properties are “detected” by asymptotics

Principle

Modular forms leave their fingerprints.

Ramanujan’s Last Letter considers radial asymptotics:
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Finding modular forms in the sea of q-series

Easy Lemma (One-term Expansion)

If f (q) is a (weakly hol.) modular form of weight k on a
congruence subgroup, then there are numbers a, b such that

e
a
ε f (e−ε) ∼ bε−w + o(εN) for all N ≥ 0.

Ramanujan started his last letter by expanding

F (q) :=
∑

n≥0
q
n(n+1)

2

(qn)2 ((a; q)n :=
∏n−1

j=0 (1− aqj)):

F (e−s) =

√
s

2π
√

5
exp

(
π2

5s
+

s

8
√

5
+ c2s

2 + c3s
3 + . . .

)
and conjecturing that there are infinitely many non-zero cj .

Mock modular forms are “near misses” off by just one term.
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Example from Nahm sums:

Nahm considered functions like∑
n1,...,nk≥0

qn
TAn∏k

j=1(q)nj
.

Important in knot theory, conformal field theory, include
Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

fA,B,C (q) :=
∑
n≥0

qAn
2+Bn+C

(q)n
,

there are exactly 7 triples (A,B,C ) ∈ Q3 where fA,B,C is modular.

Zagier proved that all others fail the One-term Expansion;
none satisfy a two-term expansion of mock modular forms.



Conjectures of Andrews on partition-theoretic q-series

Example from Nahm sums:

Nahm considered functions like∑
n1,...,nk≥0

qn
TAn∏k

j=1(q)nj
.

Important in knot theory, conformal field theory, include
Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

fA,B,C (q) :=
∑
n≥0

qAn
2+Bn+C

(q)n
,

there are exactly 7 triples (A,B,C ) ∈ Q3 where fA,B,C is modular.

Zagier proved that all others fail the One-term Expansion;
none satisfy a two-term expansion of mock modular forms.



Conjectures of Andrews on partition-theoretic q-series

Example from Nahm sums:

Nahm considered functions like∑
n1,...,nk≥0

qn
TAn∏k

j=1(q)nj
.

Important in knot theory, conformal field theory, include
Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

fA,B,C (q) :=
∑
n≥0

qAn
2+Bn+C

(q)n
,

there are exactly 7 triples (A,B,C ) ∈ Q3 where fA,B,C is modular.

Zagier proved that all others fail the One-term Expansion;
none satisfy a two-term expansion of mock modular forms.



Conjectures of Andrews on partition-theoretic q-series

Example from Nahm sums:

Nahm considered functions like∑
n1,...,nk≥0

qn
TAn∏k

j=1(q)nj
.

Important in knot theory, conformal field theory, include
Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

fA,B,C (q) :=
∑
n≥0

qAn
2+Bn+C

(q)n
,

there are exactly 7 triples (A,B,C ) ∈ Q3 where fA,B,C is modular.

Zagier proved that all others fail the One-term Expansion;
none satisfy a two-term expansion of mock modular forms.



Conjectures of Andrews on partition-theoretic q-series

Connection between the two types of asymptotics

(Near) Modular forms are a machine for turning radial
asymptotics into asymptotics of Fourier coefficients.

Key example: Hardy-Ramanujan developed the Circle
Method to derive the asymptotics for p(n) from the modular
symmetries of its generating function: P(q) :=

∑
n≥1 p(n)qn.

Famous Problem of Andrews: Prove modularity of the

representation P(q) =
∑

n≥1
qn

2

(q)2
n
directly without first

proving a
∑

=
∏

identity. Very hard, but you would
immediately “suspect” modularity from radial asymptotics!
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The partition case

Let q := e2πiτ ; τ ∈ H.

Then ∑
n≥1

p(n)qn =
q

1
24

η(τ)
=

1∏
n≥1(1− qn)

,

where η(τ) is the Dedekind eta function, a MF of weight 1/2.

Theorem (Hardy–Ramanujan)

As n→∞ we have

p(n) ∼ 1

4
√

3n
e
π
√

2n
3
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The Circle Method

Key Idea (Cauchy’s Theorem)

The coefficients c(n) of a Fourier expansion C (q) =
∑

n≥0 c(n)qn

can be recovered as

c(n) =
1

2πi

∫
C
C (q)q−n

dq

q

where C is a circle of radius less than 1 transversed once in the
counter-clockwise direction.

Often, there are singularities of C (q) when q is a root of
unity, which can be estimated well using modular-type
arguments. One then collects all of these terms together to
obtain an asymptotic estimate for c(n).

In many applications, the pole at q = 1 gives the largest
growth and we call it the dominant pole.
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Wright’s Circle Method

Wright’s Circle Method is a trade-off: Throw all
non-dominant poles into an error term along minor arcs.

We trade ease of calculation for less information. Now we only
get an asymptotic with an error term, and lose the possibility
of exact formulas (like in Rademacher’s expansion for p(n)).

This works really well when there are finitely many dominant
main terms that always beat error terms for large n.

This is much more flexible in dealing with non-modular
functions.



Conjectures of Andrews on partition-theoretic q-series

Wright’s Circle Method

Wright’s Circle Method is a trade-off: Throw all
non-dominant poles into an error term along minor arcs.

We trade ease of calculation for less information. Now we only
get an asymptotic with an error term, and lose the possibility
of exact formulas (like in Rademacher’s expansion for p(n)).

This works really well when there are finitely many dominant
main terms that always beat error terms for large n.

This is much more flexible in dealing with non-modular
functions.



Conjectures of Andrews on partition-theoretic q-series

Wright’s Circle Method

Wright’s Circle Method is a trade-off: Throw all
non-dominant poles into an error term along minor arcs.

We trade ease of calculation for less information. Now we only
get an asymptotic with an error term, and lose the possibility
of exact formulas (like in Rademacher’s expansion for p(n)).

This works really well when there are finitely many dominant
main terms that always beat error terms for large n.

This is much more flexible in dealing with non-modular
functions.



Conjectures of Andrews on partition-theoretic q-series

Wright’s Circle Method

Wright’s Circle Method is a trade-off: Throw all
non-dominant poles into an error term along minor arcs.

We trade ease of calculation for less information. Now we only
get an asymptotic with an error term, and lose the possibility
of exact formulas (like in Rademacher’s expansion for p(n)).

This works really well when there are finitely many dominant
main terms that always beat error terms for large n.

This is much more flexible in dealing with non-modular
functions.



Conjectures of Andrews on partition-theoretic q-series

Questions of Andrews

1986 Monthly: Andrews posed conjectures from experiments.

In Ramanujan’s Lost Notebook:

σ(q) :=
∑
n≥0

q
n(n+1)

2

(−q; q)n
=:
∑
n≥0

S(n)qn

= 1+q−q2+2q3−2q4+q5+q7−2q8+2q10−q12−2q13+O(q14).

Conjecture (Andrews)

The S(n) are zero infinitely often, but lim sup |S(n)| = +∞.

No |S(n)| for n ≤ 1600 is ≥ 4, but terms can exceed 1013.
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What is going on?

These strange numerical phenomena are a hint of structure.

Andrews-Dyson-Hickerson: The conjecture is true, ties
coefficients to arithmetic in Q(

√
6).

Generating function version: indefinite theta function

qσ(q24) =
∑

a>6|b|

(
12

a

)
(−1)bqa

2−24b2
.
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(
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a

)
(−1)bqa
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Even deeper structure

Cohen: σ has a friend,

σ∗(q) = −2
∑
n≥0

qn+1(q2, q2)n.

Together, σ, σ∗ encode a Maass waveform.

Zwegers: These are analogues of the mock theta functions in
his thesis; give“mock Maass theta functions.”

Zagier: These are period functions of the Maass waveform,
and give quantum modular forms.
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Other functions

Another function from the Lost Notebook:

v1(q) :=
∑
n≥0

q
n(n+1)

2

(−q2; q2)n
=:
∑
n≥0

V1(n)qn.

A partition is odd-even if the parity of the parts alternates
starting with the smallest part odd. The rank, the difference
between the largest part and the number of parts, of an
odd-even partition is even.

The V1(n) count the difference between the number of
odd-even partitions of n with rank ≡ 0 (mod 4) and (mod 2)
(mod 4).
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Other conjectures

Conjecture (Andrews)

We have that |V1(n)| → ∞ as n→∞ away from set of density 0.

Remark

Andrews’ original conj. didn’t include the set of density 0 condn.

Conjecture (Andrews)

For almost all n, V1(n), V1(n + 1), V1(n + 2) and V1(n + 3) are
two positive and two negative numbers.
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Main Result

Theorem (Folsom, Males, R., Storzer (2023))

The two conjectures of Andrews above are true.
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Outline of strategy

1 Determine radial asymptotics for the generating function.

2 Perform the circle method to get asymptotics for the Fourier
coefficients.

3 Interpret the Fourier coefficients.
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Radial limits: the “easy case”

Lemma

Let ζN := e2πi/N . For any root of unity ζ`m with gcd(`,m) = 1 and
4 - m, we have that

v1(ζ`m) = 2
m−1∑
s=0

ζ
`s(s+1)
2m

(−ζ2`
m ; ζ2`

m )s
= O(1).

This is just some number, so we only need to worry about 4-mth
roots of unity.
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Radial limits: the “hard case”

Theorem (Folsom, Males, R., Storzer (2023))

If 4|m, then as z → 0 (in a fixed cone in the right half-plane),

v1(ζe−z) =e
16V
zm2

√
2πi

z

(
γ+

(α) + O(|z |)
)

+e
−16V
zm2

√
2πi

−z

(
γ−(α) + O(|z |)

)
.

Here using Bloch-Wigner dilogarithm: V = D(e(1/6)) i
8 , the

gamma numbers are, e.g,:γ+ := γ+
(1/4) = γ−(3/4) = 1

2 4
√

3(2−
√

3)
and

γ− := γ−(1/4) = γ+
(3/4) = 1

2 4
√

3(2+
√

3)
.

In particular, the largest growth is at ±i (when m = 4).
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Idea of the proof

Integrals are easier than sums. Determine a new contour
integral representation of v1(q) over a complicated contour.

Taking care of various branch cuts and poles/residues, make
some changes of variable to massage the integral into a nicer
form.

Split into integral pieces, each of which should have different
properties.

Use the saddle-point method to determine the asymptotic
behavior of the function toward fourth roots of unity.
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“Taste” of the proof for m = 4

Split up: v
[j]
1 (q) =

∑
0≤n≡j (mod 2) q

n(n+1)/2/(−q2; q2)n.

We modify contour integral of Watson. For example, v
[0]
1 (q) is

−1

2i

1

(−q2; q2)∞

∫
L∞

eπis/4e−zs(s+1)/2(−e−2szq2; q2)∞
1

2 sin (πs/2)

Here (ϕ specifies an angle we approach the root of unity at)
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“Essence” of the saddle point method

Suppose we have an integral of the shape:∫
Γ
f (z)eA·g(z)dz ,

where f , g are holomorphic functions and Γ ⊆ C is a contour.

We want to estimate integrals of this shape as A→∞.

Since f , g are holomorphic, we can deform the contour
without changing the value of the integral (or if we have
poles, we pick up residues).

The points where the real part of g(z) is maximized and the
imaginary part of g(z) is constant are called saddle points,
and are zeros of g ′(z).
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Saddle point method (cont.)

Shift to path running through the saddle point and making
shifts of the integration variable to center on the zero of g(z).

Then the integral can be written in terms of Gaussian-like
integrals.

These integrals may then be approximated by well-known
means for large values of A.
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Asymptotics for Fourier coefficients

Theorem (Folsom, Males, R., Storzer (2023))

As n→∞ we have

V1(n) =(−1)b
n
2
c e
√

2|V |n
√
n

(γ+ + (−1)nγ−)

×
(

cos(
√

2|V |n)− (−1)n sin(
√

2|V |n)
)(

1 + O
(
n−

1
2

))
+ O

(
n−

1
2 e

√
|V |n

2

)
.
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Ideas of the proof

Write

V1(n) =
1

2πi

∫
C

v1(q)

qn
dq

q
.

Now let ∫
C

=

∫
C1

+

∫
C2

+

∫
C−C1−C2

,

where C1 is a major arc around i , C2 is a major arc around −i , and
everything else is a minor arc.
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Major arcs

Consider the term M1(n) := 1
2πi

∫
C1

v1(q)
qn+1 dq.

Choose the radius of the circle C to be e−λ with λ :=
√
|V |
n .

Then the arc C1 is described by ie−λ+iθ with θ ∈ (−δ, δ).

Make the change of variable q = ie−z and parameterize where
z runs from λ+ iδ to λ− iδ, to obtain

M1(n) = −(−i)n

2πi

∫ λ−iδ

λ+iδ

v1 (ie−z)

e−zn
dz
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Using radial asymptotics

Now we plug in the asymptotic expansion above!

Letting δ = λ and making a change of variable, plugging in
and rearranging (and ignoring some constants) gives us
combinations of integrals of the shape∫ √|V |(1+i)

√
|V |(1−i)

e
√
n(V

z
+z)z−

1
2 dz .

This can be analyzed by the saddle-point method again.
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The output on the major arcs

Ignoring all the (tedious) details, doing this for ±i we obtain
that the major arc contribution is asymptotic to the claimed
asymptotic formula.

Principle

If you write a paper using the Circle Method, it always takes longer
than you expect to carry out the details. Even if you expect it to
take longer than you expect!
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Minor arcs

The largest contribution to the minor arcs comes from the
8-th order roots of unity.

Thus we may bound the entire error term E (n) by the
contribution from the 8-th order roots of unity multiplied by
the length of the integral, which is less than 2π.

We then perform another saddle point analysis.
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Sign pattern explanation (Conjecture 2)

Asymptotics for V1(n) reduce us to study signs of

(−1)b
n
2
c
(

cos
(√

2|V |n
)

+ (−1)n+1 sin
(√

2|V |n
))

.

The sign behavior of (−1)b
n
2
c for n (mod 4) is clear. Thus, its

enough to study the signs of

cos
(√

2|V |n
)

+ (−1)n+1 sin
(√

2|V |n
)

For large n, values cos / sin(
√

2|V |(n + j)) for j ∈ {0, 1, 2, 3}
are close. To see this, for a ∈ R consider

lim
x→∞

cos(a
√
x + 1)−cos(a

√
x) = lim

x→∞
sin(a

√
x + 1)−sin(a

√
x) = 0.
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are close. To see this, for a ∈ R consider

lim
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cos(a
√
x + 1)−cos(a

√
x) = lim
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sin(a

√
x + 1)−sin(a

√
x) = 0.
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Other conjectures for V1(n)

Conjecture (Andrews)

For n ≥ 5 there is an infinite sequence
N5 = 293,N6 = 410,N7 = 545,N8 = 702, . . . ,Nn ≥ 10n2, . . . such
that V1(Nn),V1(Nn + 1),V1(Nn + 2) all have the same sign.

Conjecture (Andrews)

The numbers |V1(Nn)|, |V1(Nn + 1)|, |V1(Nn + 2)| contain a local
minimum of the sequence |V1(j)|.
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Diophantine Analysis

Conjecture 4 seems to be explained by Conj. 3 + our
asymptotic for v1(n).

The “bad numbers” in Conjecture 3 correspond to being close
to a root of cos(x)± sin(x).

To do Diophantine analysis, need to understand (ir)rationality
(very hard), and control the error term closely.

Case I (most likely case): π2/|V | 6∈ Q.We prove there is an
infinite sequence of integer “near roots” which would “mess
up” the sign pattern.

Up to 5 million coefficients (715 sign pattern failures), all of
our integers are within 2 of the conjectural infinite sequence.

Milnor =⇒ |V | =
9
√

3ζQ(
√
−3)(2)

16π2 .
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More on these sorts of constants

Siegel-Klingen: Used Hilbert modular forms to show that
ζK (2n) ∈

√
| disc(K )|π2kNQ for n ∈ N, K totally real.

Zagier: ζK (2) for arbitrary number fields represented via
powers of π,

√
disc(K ) and integrals of the shape

A(x) =

∫ x

0

1

1 + t2
log

4

1 + t2
dt.

Is this a hint of a modular object involving Q(
√
−3)???
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Takeaways

We have a novel method for analyzing Nahm-type sums.

Previous methods using Euler-Maclaurin/Poisson summation
not sufficient. We modify a contour integral of Watson.

Andrews’ intuition and our results imply that there could be
deep modular arithmetic lurking. Modular forms tend to leave
their “fingerprints.”

We prove, or at least “explain” modulo hard irrationality
questions, the conjectures of Andrews on V1. There are
additional functions with similar conjectures in his paper!
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Thank you!!


