Conjectures of Andrews on partition-theoretic *q*-series

Larry Rolen

Vanderbilt University

February 24, 2024, Tulane University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Given a sequence of numbers a_0, a_1, \ldots , how quickly does a_n grow?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Question

Given a sequence of numbers a_0, a_1, \ldots , how quickly does a_n grow?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A few (of many) examples:
 - Integer partitions/partition statistics

Question

Given a sequence of numbers a_0, a_1, \ldots , how quickly does a_n grow?

- A few (of many) examples:
 - Integer partitions/partition statistics
 - Knot invariants (e.g.: Volume Conjecture)

Question

Given a sequence of numbers a_0, a_1, \ldots , how quickly does a_n grow?

- A few (of many) examples:
 - Integer partitions/partition statistics
 - Knot invariants (e.g.: Volume Conjecture)
 - Hodge numbers of Hilbert schemes

Question

Given a sequence of numbers a_0, a_1, \ldots , how quickly does a_n grow?

- A few (of many) examples:
 - Integer partitions/partition statistics
 - Knot invariants (e.g.: Volume Conjecture)
 - Hodge numbers of Hilbert schemes
 - States of black holes

• General idea: form generating functions $f(q) := \sum_{n} a_n q^n$.

- General idea: form generating functions $f(q) := \sum_n a_n q^n$.
- If we're "lucky," modularity properties of f(q) can be used to give asymptotics for a_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- General idea: form generating functions $f(q) := \sum_{n} a_n q^n$.
- If we're "lucky," modularity properties of f(q) can be used to give asymptotics for a_n.
- Often not a modular form. If we're *flexible* about modularity, many more examples arise; this is often "good enough" for asymptotics. E.g.: Mirror symmetry often yields "almost modular" functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- General idea: form generating functions $f(q) := \sum_{n} a_n q^n$.
- If we're "lucky," modularity properties of f(q) can be used to give asymptotics for a_n.
- Often not a modular form. If we're *flexible* about modularity, many more examples arise; this is often "good enough" for asymptotics. E.g.: Mirror symmetry often yields "almost modular" functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Don Zagier: Modular forms are everywhere.

- General idea: form generating functions $f(q) := \sum_n a_n q^n$.
- If we're "lucky," modularity properties of f(q) can be used to give asymptotics for a_n.
- Often not a modular form. If we're *flexible* about modularity, many more examples arise; this is often "good enough" for asymptotics. E.g.: Mirror symmetry often yields "almost modular" functions.
- Don Zagier: Modular forms are everywhere.

Two Way Street

Studying asymptotics of varied objects gives hints of novel modularity, leading to new number theory.

- General idea: form generating functions $f(q) := \sum_{n} a_n q^n$.
- If we're "lucky," modularity properties of f(q) can be used to give asymptotics for a_n.
- Often not a modular form. If we're *flexible* about modularity, many more examples arise; this is often "good enough" for asymptotics. E.g.: Mirror symmetry often yields "almost modular" functions.
- Don Zagier: Modular forms are everywhere.

Two Way Street

Studying asymptotics of varied objects gives hints of novel modularity, leading to new number theory. Conversely, the number theory can prove new results in the other field.

• Functions on $\mathbb{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$

- Functions on $\mathbb{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$
- Slash action: $f|_k\gamma(\tau) := (c\tau + d)^{-k}f((a\tau + b)/(c\tau + d)).$

- Functions on $\mathbb{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$
- Slash action: $f|_k\gamma(\tau) := (c\tau + d)^{-k}f((a\tau + b)/(c\tau + d)).$
- Modularity:

 - growth conditions (classical: holomoprhic at "cusps")

+ analytic conditions (classical: holomorphic)

- Functions on $\mathbb{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$
- Slash action: $f|_k\gamma(\tau) := (c\tau + d)^{-k}f((a\tau + b)/(c\tau + d)).$
- Modularity:

 - growth conditions (classical: holomoprhic at "cusps")
- New Quanta article: https://tinyurl.com/vv8mcjuw

A D N A 目 N A E N A E N A B N A C N

- Functions on $\mathbb{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$
- Slash action: $f|_k\gamma(\tau) := (c\tau + d)^{-k}f((a\tau + b)/(c\tau + d)).$
- Modularity:

 - growth conditions (classical: holomoprhic at "cusps")
 - + analytic conditions (classical: holomorphic)
- New Quanta article: https://tinyurl.com/vv8mcjuw
- "Algebra" of adjectives: weakly, quasi, meromorphic, almost...

Modularity properties are "detected" by asymptotics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Principle

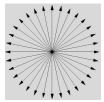
Modular forms leave their fingerprints.

Modularity properties are "detected" by asymptotics

Principle

Modular forms leave their fingerprints.

Ramanujan's Last Letter considers radial asymptotics:



・ロト ・四ト ・ヨト ・ヨト ・ヨ

Modularity properties are "detected" by asymptotics

Principle

Modular forms leave their fingerprints.

Ramanujan's Last Letter considers radial asymptotics:

Easy Lemma (One-term Expansion)

If f(q) is a (weakly hol.) modular form of weight k on a congruence subgroup, then there are numbers a, b such that

$$e^{rac{a}{arepsilon}}f(e^{-arepsilon})\sim barepsilon^{-w}+o(arepsilon^N) \quad ext{ for all }N\geq 0.$$

Easy Lemma (One-term Expansion)

If f(q) is a (weakly hol.) modular form of weight k on a congruence subgroup, then there are numbers a, b such that

$$e^{rac{a}{arepsilon}}f(e^{-arepsilon})\sim barepsilon^{-w}+o(arepsilon^N) \quad ext{ for all }N\geq 0.$$

• Ramanujan started his last letter by expanding $F(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(q_n)^2} \quad ((a;q)_n := \prod_{j=0}^{n-1} (1 - aq^j)):$

Easy Lemma (One-term Expansion)

If f(q) is a (weakly hol.) modular form of weight k on a congruence subgroup, then there are numbers a, b such that

$$e^{rac{a}{arepsilon}}f(e^{-arepsilon})\sim barepsilon^{-w}+o(arepsilon^N) \quad ext{ for all }N\geq 0.$$

• Ramanujan started his last letter by expanding

$$F(q) := \sum_{n \ge 0} rac{q^{rac{n(n+1)}{2}}}{(q_n)^2} \quad ((a;q)_n := \prod_{j=0}^{n-1} (1-aq^j)):$$

$$F(e^{-s}) = \sqrt{\frac{s}{2\pi\sqrt{5}}} \exp\left(\frac{\pi^2}{5s} + \frac{s}{8\sqrt{5}} + c_2s^2 + c_3s^3 + \ldots\right)$$

and conjecturing that there are infinitely many non-zero c_j .

Easy Lemma (One-term Expansion)

If f(q) is a (weakly hol.) modular form of weight k on a congruence subgroup, then there are numbers a, b such that

$$e^{rac{a}{arepsilon}}f(e^{-arepsilon})\sim barepsilon^{-w}+o(arepsilon^N) \quad ext{ for all }N\geq 0.$$

• Ramanujan started his last letter by expanding

$${\mathcal F}(q):=\sum_{n\geq 0}rac{q^{rac{n(n-1)}{2}}}{(q_n)^2} \quad ((a;q)_n:=\prod_{j=0}^{n-1}(1-aq^j)):$$

$$F(e^{-s}) = \sqrt{\frac{s}{2\pi\sqrt{5}}} \exp\left(\frac{\pi^2}{5s} + \frac{s}{8\sqrt{5}} + c_2s^2 + c_3s^3 + \ldots\right)$$

and conjecturing that there are infinitely many non-zero c_i .

• Mock modular forms are "near misses" off by just one term.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

• Nahm considered functions like

$$\sum_{n_1,\ldots,n_k\geq 0}\frac{q^{n^TAn}}{\prod_{j=1}^k(q)_{n_j}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Nahm considered functions like

$$\sum_{n_1,\ldots,n_k\geq 0}\frac{q^{n^TAn}}{\prod_{j=1}^k(q)_{n_j}}$$

• Important in knot theory, conformal field theory, include Rogers-Ramanujan functions, mock theta functions...

• Nahm considered functions like

$$\sum_{n_1,\ldots,n_k\geq 0}\frac{q^{n^TAn}}{\prod_{j=1}^k(q)_{n_j}}$$

• Important in knot theory, conformal field theory, include Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

$$f_{A,B,C}(q) := \sum_{n\geq 0} \frac{q^{An^2+Bn+C}}{(q)_n},$$

there are exactly 7 triples $(A, B, C) \in \mathbb{Q}^3$ where $f_{A,B,C}$ is modular.

• Nahm considered functions like

$$\sum_{n_1,\ldots,n_k\geq 0}\frac{q^{n^TAn}}{\prod_{j=1}^k(q)_{n_j}}$$

• Important in knot theory, conformal field theory, include Rogers-Ramanujan functions, mock theta functions...

Theorem (Zagier)

In the family

$$f_{A,B,C}(q) := \sum_{n\geq 0} \frac{q^{An^2+Bn+C}}{(q)_n},$$

there are exactly 7 triples $(A, B, C) \in \mathbb{Q}^3$ where $f_{A,B,C}$ is modular.

 Zagier proved that all others fail the One-term Expansion; none satisfy a two-term expansion of mock modular forms.

• (Near) Modular forms are a machine for turning radial asymptotics into asymptotics of Fourier coefficients.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- (Near) Modular forms are a machine for turning radial asymptotics into asymptotics of Fourier coefficients.
- Key example: Hardy-Ramanujan developed the Circle
 Method to derive the asymptotics for p(n) from the modular symmetries of its generating function: P(q) := ∑_{n>1} p(n)qⁿ.

- (Near) Modular forms are a machine for turning radial asymptotics into asymptotics of Fourier coefficients.
- Key example: Hardy-Ramanujan developed the Circle
 Method to derive the asymptotics for p(n) from the modular symmetries of its generating function: P(q) := ∑_{n>1} p(n)qⁿ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Famous Problem of Andrews: Prove modularity of the representation $P(q) = \sum_{n \ge 1} \frac{q^{n^2}}{(q)_n^2}$ directly without first proving a $\sum = \prod$ identity.

- (Near) Modular forms are a machine for turning radial asymptotics into asymptotics of Fourier coefficients.
- Key example: Hardy-Ramanujan developed the Circle
 Method to derive the asymptotics for p(n) from the modular symmetries of its generating function: P(q) := ∑_{n>1} p(n)qⁿ.
- Famous Problem of Andrews: Prove modularity of the representation P(q) = ∑_{n≥1} q^{n²}/(q)²_n directly without first proving a ∑ = ∏ identity. Very hard, but you would immediately "suspect" modularity from radial asymptotics!

The partition case

• Let
$$q := e^{2\pi i \tau}$$
; $\tau \in \mathbb{H}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The partition case

• Let
$$q := e^{2\pi i \tau}$$
; $\tau \in \mathbb{H}$.

• Then

$$\sum_{n\geq 1} p(n)q^n = \frac{q^{\frac{1}{24}}}{\eta(\tau)} = \frac{1}{\prod_{n\geq 1}(1-q^n)}$$

where $\eta(\tau)$ is the Dedekind eta function, a MF of weight 1/2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The partition case

• Let
$$q := e^{2\pi i \tau}$$
; $\tau \in \mathbb{H}$.

Then

$$\sum_{n\geq 1} p(n)q^n = \frac{q^{\frac{1}{24}}}{\eta(\tau)} = \frac{1}{\prod_{n\geq 1}(1-q^n)}$$

where $\eta(\tau)$ is the Dedekind eta function, a MF of weight 1/2.

Theorem (Hardy-Ramanujan)

As $n \to \infty$ we have

$$p(n)\sim rac{1}{4\sqrt{3}n}e^{\pi\sqrt{rac{2n}{3}}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjectures of Andrews on partition-theoretic q-series

The Circle Method

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The Circle Method

Key Idea (Cauchy's Theorem)

The coefficients c(n) of a Fourier expansion $C(q) = \sum_{n \ge 0} c(n)q^n$ can be recovered as

$$c(n) = \frac{1}{2\pi i} \int_C C(q) q^{-n} \frac{dq}{q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where C is a circle of radius less than 1 transversed once in the counter-clockwise direction.

The Circle Method

Key Idea (Cauchy's Theorem)

The coefficients c(n) of a Fourier expansion $C(q) = \sum_{n \ge 0} c(n)q^n$ can be recovered as

$$c(n) = \frac{1}{2\pi i} \int_C C(q) q^{-n} \frac{dq}{q}$$

where C is a circle of radius less than 1 transversed once in the counter-clockwise direction.

 Often, there are singularities of C(q) when q is a root of unity, which can be estimated well using modular-type arguments. One then collects all of these terms together to obtain an asymptotic estimate for c(n).

The Circle Method

Key Idea (Cauchy's Theorem)

The coefficients c(n) of a Fourier expansion $C(q) = \sum_{n \ge 0} c(n)q^n$ can be recovered as

$$c(n) = \frac{1}{2\pi i} \int_C C(q) q^{-n} \frac{dq}{q}$$

where C is a circle of radius less than 1 transversed once in the counter-clockwise direction.

- Often, there are singularities of C(q) when q is a root of unity, which can be estimated well using modular-type arguments. One then collects all of these terms together to obtain an asymptotic estimate for c(n).
- In many applications, the pole at q = 1 gives the largest growth and we call it the dominant pole.

Conjectures of Andrews on partition-theoretic q-series

Wright's Circle Method

• Wright's Circle Method is a trade-off: Throw all non-dominant poles into an error term along minor arcs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Wright's Circle Method

- Wright's Circle Method is a trade-off: Throw all non-dominant poles into an error term along minor arcs.
- We trade ease of calculation for less information. Now we only get an asymptotic with an error term, and lose the possibility of exact formulas (like in Rademacher's expansion for *p*(*n*)).

Wright's Circle Method

- Wright's Circle Method is a trade-off: Throw all non-dominant poles into an error term along minor arcs.
- We trade ease of calculation for less information. Now we only get an asymptotic with an error term, and lose the possibility of exact formulas (like in Rademacher's expansion for *p*(*n*)).
- This works really well when there are finitely many dominant main terms that always beat error terms for large *n*.

A D N A 目 N A E N A E N A B N A C N

Wright's Circle Method

- Wright's Circle Method is a trade-off: Throw all non-dominant poles into an error term along minor arcs.
- We trade ease of calculation for less information. Now we only get an asymptotic with an error term, and lose the possibility of exact formulas (like in Rademacher's expansion for *p*(*n*)).
- This works really well when there are finitely many dominant main terms that always beat error terms for large *n*.

(日)(1)<p

• This is much more flexible in dealing with non-modular functions.

• 1986 Monthly: Andrews posed conjectures from experiments.

・ロト・西ト・山田・山田・山口・

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook:

$$\sigma(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n} =: \sum_{n \ge 0} S(n)q^n$$
$$= 1 + q - q^2 + 2q^3 - 2q^4 + q^5 + q^7 - 2q^8 + 2q^{10} - q^{12} - 2q^{13} + O(q^{14}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook:

$$\sigma(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n} =: \sum_{n \ge 0} S(n)q^n$$

= 1+q-q^2+2q^3-2q^4+q^5+q^7-2q^8+2q^{10}-q^{12}-2q^{13}+O(q^{14}).

Conjecture (Andrews)

The S(n) are zero infinitely often, but $\limsup |S(n)| = +\infty$.

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook:

$$\sigma(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q;q)_n} =: \sum_{n \ge 0} S(n)q^n$$
$$= 1 + q - q^2 + 2q^3 - 2q^4 + q^5 + q^7 - 2q^8 + 2q^{10} - q^{12} - 2q^{13} + O(q^{14}).$$

Conjecture (Andrews)

The S(n) are zero infinitely often, but $\limsup |S(n)| = +\infty$.

• No |S(n)| for $n \le 1600$ is ≥ 4 , but terms can exceed 10^{13} .

What is going on?

• These strange numerical phenomena are a hint of structure.

What is going on?

• These strange numerical phenomena are a hint of structure.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Andrews-Dyson-Hickerson: The conjecture is true, ties coefficients to arithmetic in Q(√6).

What is going on?

- These strange numerical phenomena are a hint of structure.
- Andrews-Dyson-Hickerson: The conjecture is true, ties coefficients to arithmetic in Q(√6).
- Generating function version: indefinite theta function

$$q\sigma(q^{24}) = \sum_{a>6|b|} \left(\frac{12}{a}\right) (-1)^b q^{a^2 - 24b^2}.$$

• Cohen: σ has a friend,

$$\sigma^*(q) = -2\sum_{n\geq 0}q^{n+1}(q^2,q^2)_n.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Cohen: σ has a friend,

$$\sigma^*(q) = -2\sum_{n>0}q^{n+1}(q^2,q^2)_n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Together, σ , σ^* encode a Maass waveform.

• Cohen: σ has a friend,

$$\sigma^*(q) = -2\sum_{n\geq 0} q^{n+1}(q^2,q^2)_n.$$

- Together, σ , σ^* encode a Maass waveform.
- Zwegers: These are analogues of the mock theta functions in his thesis; give "mock Maass theta functions."

• Cohen: σ has a friend,

$$\sigma^*(q) = -2\sum_{n\geq 0} q^{n+1}(q^2,q^2)_n.$$

- Together, σ , σ^* encode a Maass waveform.
- Zwegers: These are analogues of the mock theta functions in his thesis; give "mock Maass theta functions."
- Zagier: These are *period functions* of the Maass waveform, and give *quantum modular forms*.

• Another function from the Lost Notebook:

$$v_1(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q^2; q^2)_n} =: \sum_{n \ge 0} V_1(n)q^n.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Another function from the Lost Notebook:

$$v_1(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q^2; q^2)_n} =: \sum_{n \ge 0} V_1(n)q^n.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• A partition is *odd-even* if the parity of the parts alternates starting with the smallest part odd.

• Another function from the Lost Notebook:

$$v_1(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q^2; q^2)_n} =: \sum_{n \ge 0} V_1(n)q^n.$$

• A partition is *odd-even* if the parity of the parts alternates starting with the smallest part odd. The rank, the difference between the largest part and the number of parts, of an odd-even partition is even.

• Another function from the Lost Notebook:

$$v_1(q) := \sum_{n \ge 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q^2; q^2)_n} =: \sum_{n \ge 0} V_1(n)q^n.$$

- A partition is *odd-even* if the parity of the parts alternates starting with the smallest part odd. The rank, the difference between the largest part and the number of parts, of an odd-even partition is even.
- The V₁(n) count the difference between the number of odd-even partitions of n with rank ≡ 0 (mod 4) and (mod 2) (mod 4).

Other conjectures

Conjecture (Andrews)

We have that $|V_1(n)| \to \infty$ as $n \to \infty$ away from set of density 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other conjectures

Conjecture (Andrews)

We have that $|V_1(n)| \to \infty$ as $n \to \infty$ away from set of density 0.

Remark

Andrews' original conj. didn't include the set of density 0 condⁿ.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Other conjectures

Conjecture (Andrews)

We have that $|V_1(n)| \to \infty$ as $n \to \infty$ away from set of density 0.

Remark

And rews' original conj. didn't include the set of density 0 cond^n .

Conjecture (Andrews)

For almost all n, $V_1(n)$, $V_1(n+1)$, $V_1(n+2)$ and $V_1(n+3)$ are two positive and two negative numbers.

Data

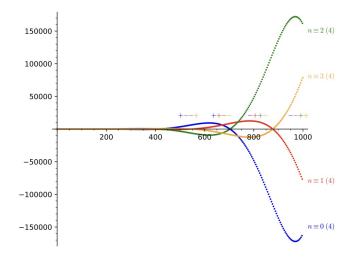


FIGURE 1. $V_1(n)$ for n = 1, ..., 1000

Main Result

Theorem (Folsom, Males, R., Storzer (2023))

The two conjectures of Andrews above are true.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conjectures of Andrews on partition-theoretic q-series

1 Determine radial asymptotics for the generating function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline of strategy

1 Determine radial asymptotics for the generating function.

Perform the circle method to get asymptotics for the Fourier coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline of strategy

1 Determine radial asymptotics for the generating function.

Perform the circle method to get asymptotics for the Fourier coefficients.

Interpret the Fourier coefficients.

Radial limits: the "easy case"

Lemma

Let $\zeta_N := e^{2\pi i/N}$. For any root of unity ζ_m^{ℓ} with $gcd(\ell, m) = 1$ and $4 \nmid m$, we have that

$$v_1(\zeta_m^\ell) = 2 \sum_{s=0}^{m-1} \frac{\zeta_{2m}^{\ell s(s+1)}}{(-\zeta_m^{2\ell}; \zeta_m^{2\ell})_s} = O(1).$$

Radial limits: the "easy case"

Lemma

Let $\zeta_N := e^{2\pi i/N}$. For any root of unity ζ_m^{ℓ} with $gcd(\ell, m) = 1$ and $4 \nmid m$, we have that

$$v_1(\zeta_m^\ell) = 2 \sum_{s=0}^{m-1} \frac{\zeta_{2m}^{\ell s(s+1)}}{(-\zeta_m^{2\ell}; \zeta_m^{2\ell})_s} = O(1).$$

This is just some number, so we only need to worry about 4-mth roots of unity.

Theorem (Folsom, Males, R., Storzer (2023)) If 4|m, then as $z \rightarrow 0$ (in a fixed cone in the right half-plane),

$$v_1(\zeta e^{-z}) = e^{\frac{16V}{zm^2}} \sqrt{\frac{2\pi i}{z}} \left(\gamma^+_{(\alpha)} + O(|z|) \right) \\ + e^{\frac{-16V}{zm^2}} \sqrt{\frac{2\pi i}{-z}} \left(\gamma^-_{(\alpha)} + O(|z|) \right).$$

Theorem (Folsom, Males, R., Storzer (2023)) If 4|m, then as $z \rightarrow 0$ (in a fixed cone in the right half-plane),

$$v_1(\zeta e^{-z}) = e^{\frac{16V}{zm^2}} \sqrt{\frac{2\pi i}{z}} \left(\gamma^+_{(\alpha)} + O(|z|) \right) \\ + e^{\frac{-16V}{zm^2}} \sqrt{\frac{2\pi i}{-z}} \left(\gamma^-_{(\alpha)} + O(|z|) \right).$$

Here using Bloch-Wigner dilogarithm: $V = D(e(1/6))\frac{i}{8}$, the gamma numbers are, e.g.:

Theorem (Folsom, Males, R., Storzer (2023)) If 4|m, then as $z \rightarrow 0$ (in a fixed cone in the right half-plane),

$$v_1(\zeta e^{-z}) = e^{\frac{16V}{zm^2}} \sqrt{\frac{2\pi i}{z}} \left(\gamma^+_{(\alpha)} + O(|z|)\right) \\ + e^{\frac{-16V}{zm^2}} \sqrt{\frac{2\pi i}{-z}} \left(\gamma^-_{(\alpha)} + O(|z|)\right).$$

Here using Bloch-Wigner dilogarithm: $V = D(e(1/6))\frac{i}{8}$, the gamma numbers are, e.g.; $\gamma^+ := \gamma^+_{(1/4)} = \gamma^-_{(3/4)} = \frac{1}{2\sqrt[4]{3(2-\sqrt{3})}}$ and $\gamma^- := \gamma^-_{(1/4)} = \gamma^+_{(3/4)} = \frac{1}{2\sqrt[4]{3(2+\sqrt{3})}}$.

Theorem (Folsom, Males, R., Storzer (2023)) If 4|m, then as $z \rightarrow 0$ (in a fixed cone in the right half-plane),

$$v_{1}(\zeta e^{-z}) = e^{\frac{16V}{zm^{2}}} \sqrt{\frac{2\pi i}{z}} \left(\gamma_{(\alpha)}^{+} + O(|z|) \right) \\ + e^{\frac{-16V}{zm^{2}}} \sqrt{\frac{2\pi i}{-z}} \left(\gamma_{(\alpha)}^{-} + O(|z|) \right).$$

Here using Bloch-Wigner dilogarithm: $V = D(e(1/6))\frac{i}{8}$, the gamma numbers are, e.g.; $\gamma^+ := \gamma^+_{(1/4)} = \gamma^-_{(3/4)} = \frac{1}{2\sqrt[4]{3(2-\sqrt{3})}}$ and $\gamma^- := \gamma^-_{(1/4)} = \gamma^+_{(3/4)} = \frac{1}{2\sqrt[4]{3(2+\sqrt{3})}}$.

In particular, the largest growth is at $\pm i$ (when m = 4).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Integrals are easier than sums. Determine a new contour integral representation of $v_1(q)$ over a complicated contour.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Integrals are easier than sums. Determine a new contour integral representation of v₁(q) over a complicated contour.
- Taking care of various branch cuts and poles/residues, make some changes of variable to massage the integral into a nicer form.

- Integrals are easier than sums. Determine a new contour integral representation of v₁(q) over a complicated contour.
- Taking care of various branch cuts and poles/residues, make some changes of variable to massage the integral into a nicer form.
- Split into integral pieces, each of which should have different properties.

- Integrals are easier than sums. Determine a new contour integral representation of v₁(q) over a complicated contour.
- Taking care of various branch cuts and poles/residues, make some changes of variable to massage the integral into a nicer form.
- Split into integral pieces, each of which should have different properties.

• Use the saddle-point method to determine the asymptotic behavior of the function toward fourth roots of unity.

"Taste" of the proof for m = 4

• Split up:
$$v_1^{[j]}(q) = \sum_{0 \le n \equiv j \pmod{2}} q^{n(n+1)/2} / (-q^2; q^2)_n$$
.

"Taste" of the proof for m = 4

- Split up: $v_1^{[j]}(q) = \sum_{0 \le n \equiv j \pmod{2}} q^{n(n+1)/2} / (-q^2; q^2)_n$.
- We modify contour integral of Watson. For example, $v_1^{[0]}(q)$ is

$$\frac{-1}{2i} \frac{1}{(-q^2; q^2)_{\infty}} \int_{L_{\infty}} e^{\pi i s/4} e^{-z s(s+1)/2} (-e^{-2sz} q^2; q^2)_{\infty} \frac{1}{2 \sin(\pi s/2)}$$

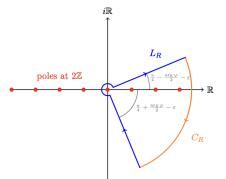
"Taste" of the proof for m = 4

• Split up:
$$v_1^{[j]}(q) = \sum_{0 \le n \equiv j \pmod{2}} q^{n(n+1)/2} / (-q^2; q^2)_n$$
.

• We modify contour integral of Watson. For example, $v_1^{[0]}(q)$ is

$$\frac{-1}{2i} \frac{1}{(-q^2; q^2)_{\infty}} \int_{L_{\infty}} e^{\pi i s/4} e^{-z s(s+1)/2} (-e^{-2sz} q^2; q^2)_{\infty} \frac{1}{2 \sin(\pi s/2)}$$

Here (φ specifies an angle we approach the root of unity at)



• Suppose we have an integral of the shape:

٠

$$\int_{\Gamma} f(z) e^{A \cdot g(z)} dz,$$

where f, g are holomorphic functions and $\Gamma \subseteq \mathbb{C}$ is a contour.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Suppose we have an integral of the shape:

$$\int_{\Gamma} f(z) e^{A \cdot g(z)} dz,$$

where f, g are holomorphic functions and $\Gamma \subseteq \mathbb{C}$ is a contour.

• We want to estimate integrals of this shape as $A \to \infty$.

• Suppose we have an integral of the shape:

٠

$$\int_{\Gamma} f(z) e^{A \cdot g(z)} dz,$$

where f, g are holomorphic functions and $\Gamma \subseteq \mathbb{C}$ is a contour.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We want to estimate integrals of this shape as $A \to \infty$.
- Since *f*, *g* are holomorphic, we can deform the contour without changing the value of the integral (or if we have poles, we pick up residues).

• Suppose we have an integral of the shape:

٠

$$\int_{\Gamma} f(z) e^{A \cdot g(z)} dz,$$

where f, g are holomorphic functions and $\Gamma \subseteq \mathbb{C}$ is a contour.

- We want to estimate integrals of this shape as $A \to \infty$.
- Since *f*, *g* are holomorphic, we can deform the contour without changing the value of the integral (or if we have poles, we pick up residues).
- The points where the real part of g(z) is maximized and the imaginary part of g(z) is constant are called saddle points, and are zeros of g'(z).

Saddle point method (cont.)

 Shift to path running through the saddle point and making shifts of the integration variable to center on the zero of g(z).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Saddle point method (cont.)

 Shift to path running through the saddle point and making shifts of the integration variable to center on the zero of g(z).

• Then the integral can be written in terms of Gaussian-like integrals.

Saddle point method (cont.)

 Shift to path running through the saddle point and making shifts of the integration variable to center on the zero of g(z).

• Then the integral can be written in terms of Gaussian-like integrals.

• These integrals may then be approximated by well-known means for large values of *A*.

Asymptotics for Fourier coefficients

Theorem (Folsom, Males, R., Storzer (2023))
As
$$n \to \infty$$
 we have

$$V_{1}(n) = (-1)^{\lfloor \frac{n}{2} \rfloor} \frac{e^{\sqrt{2|V|n}}}{\sqrt{n}} (\gamma^{+} + (-1)^{n} \gamma^{-}) \\ \times \left(\cos(\sqrt{2|V|n}) - (-1)^{n} \sin(\sqrt{2|V|n}) \right) \left(1 + O\left(n^{-\frac{1}{2}}\right) \right) \\ + O\left(n^{-\frac{1}{2}} e^{\sqrt{\frac{|V|n}{2}}} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Write

$$V_1(n) = \frac{1}{2\pi i} \int_C \frac{v_1(q)}{q^n} \frac{dq}{q}$$

Now let

$$\int_{C} = \int_{C_1} + \int_{C_2} + \int_{C-C_1-C_2},$$

where C_1 is a major arc around *i*, C_2 is a major arc around -i, and everything else is a minor arc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Major arcs

• Consider the term $M_1(n) := rac{1}{2\pi i} \int_{C_1} rac{v_1(q)}{q^{n+1}} dq.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Major arcs

- Consider the term $M_1(n) := \frac{1}{2\pi i} \int_{C_1} \frac{v_1(q)}{q^{n+1}} dq$.
- Choose the radius of the circle C to be $e^{-\lambda}$ with $\lambda := \sqrt{\frac{|V|}{n}}$. Then the arc C_1 is described by $ie^{-\lambda+i\theta}$ with $\theta \in (-\delta, \delta)$.

Major arcs

- Consider the term $M_1(n) := \frac{1}{2\pi i} \int_{C_1} \frac{v_1(q)}{q^{n+1}} dq$.
- Choose the radius of the circle C to be $e^{-\lambda}$ with $\lambda := \sqrt{\frac{|V|}{n}}$. Then the arc C_1 is described by $ie^{-\lambda+i\theta}$ with $\theta \in (-\delta, \delta)$.
- Make the change of variable $q = ie^{-z}$ and parameterize where z runs from $\lambda + i\delta$ to $\lambda i\delta$, to obtain

$$M_1(n) = -\frac{(-i)^n}{2\pi i} \int_{\lambda+i\delta}^{\lambda-i\delta} \frac{v_1(ie^{-z})}{e^{-zn}} dz$$

Conjectures of Andrews on partition-theoretic q-series

Using radial asymptotics

• Now we plug in the asymptotic expansion above!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Using radial asymptotics

- Now we plug in the asymptotic expansion above!
- Letting $\delta = \lambda$ and making a change of variable, plugging in and rearranging (and ignoring some constants) gives us combinations of integrals of the shape

$$\int_{\sqrt{|V|}(1-i)}^{\sqrt{|V|}(1+i)} e^{\sqrt{n}\left(\frac{V}{z}+z\right)} z^{-\frac{1}{2}} dz$$

Using radial asymptotics

- Now we plug in the asymptotic expansion above!
- Letting $\delta = \lambda$ and making a change of variable, plugging in and rearranging (and ignoring some constants) gives us combinations of integrals of the shape

$$\int_{\sqrt{|V|}(1-i)}^{\sqrt{|V|}(1+i)} e^{\sqrt{n}\left(\frac{V}{z}+z\right)} z^{-\frac{1}{2}} dz.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• This can be analyzed by the saddle-point method again.

The output on the major arcs

• Ignoring all the (tedious) details, doing this for $\pm i$ we obtain that the major arc contribution is asymptotic to the claimed asymptotic formula.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The output on the major arcs

• Ignoring all the (tedious) details, doing this for $\pm i$ we obtain that the major arc contribution is asymptotic to the claimed asymptotic formula.

Principle

If you write a paper using the Circle Method, it always takes longer than you expect to carry out the details.

The output on the major arcs

• Ignoring all the (tedious) details, doing this for $\pm i$ we obtain that the major arc contribution is asymptotic to the claimed asymptotic formula.

Principle

If you write a paper using the Circle Method, it always takes longer than you expect to carry out the details. Even if you expect it to take longer than you expect!

• The largest contribution to the minor arcs comes from the 8-th order roots of unity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Minor arcs

- The largest contribution to the minor arcs comes from the 8-th order roots of unity.
- Thus we may bound the entire error term *E(n)* by the contribution from the 8-th order roots of unity multiplied by the length of the integral, which is less than 2π.

Minor arcs

- The largest contribution to the minor arcs comes from the 8-th order roots of unity.
- Thus we may bound the entire error term *E(n)* by the contribution from the 8-th order roots of unity multiplied by the length of the integral, which is less than 2π.

• We then perform another saddle point analysis.

• Asymptotics for $V_1(n)$ reduce us to study signs of

$$(-1)^{\lfloor \frac{n}{2} \rfloor} \left(\cos \left(\sqrt{2|V|n} \right) + (-1)^{n+1} \sin \left(\sqrt{2|V|n} \right) \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Asymptotics for $V_1(n)$ reduce us to study signs of

$$(-1)^{\lfloor \frac{n}{2} \rfloor} \left(\cos \left(\sqrt{2|V|n} \right) + (-1)^{n+1} \sin \left(\sqrt{2|V|n} \right) \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The sign behavior of $(-1)^{\lfloor \frac{n}{2} \rfloor}$ for $n \pmod{4}$ is clear.

• Asymptotics for $V_1(n)$ reduce us to study signs of

$$(-1)^{\lfloor \frac{n}{2} \rfloor} \left(\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1} \sin\left(\sqrt{2|V|n}\right) \right).$$

 The sign behavior of (-1)^{⌊n/2 ⊥} for n (mod 4) is clear. Thus, its enough to study the signs of

$$\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1}\sin\left(\sqrt{2|V|n}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Asymptotics for $V_1(n)$ reduce us to study signs of

$$(-1)^{\lfloor \frac{n}{2} \rfloor} \left(\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1} \sin\left(\sqrt{2|V|n}\right) \right).$$

 The sign behavior of (-1)^{⌊n/2 ⊥} for n (mod 4) is clear. Thus, its enough to study the signs of

$$\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1}\sin\left(\sqrt{2|V|n}\right)$$

• For large *n*, values $\cos / \sin(\sqrt{2|V|(n+j)})$ for $j \in \{0, 1, 2, 3\}$ are close.

• Asymptotics for $V_1(n)$ reduce us to study signs of

$$(-1)^{\lfloor \frac{n}{2} \rfloor} \left(\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1} \sin\left(\sqrt{2|V|n}\right) \right).$$

 The sign behavior of (-1)^{⌊n/2 ⊥} for n (mod 4) is clear. Thus, its enough to study the signs of

$$\cos\left(\sqrt{2|V|n}\right) + (-1)^{n+1}\sin\left(\sqrt{2|V|n}\right)$$

• For large *n*, values $\cos / \sin(\sqrt{2|V|(n+j)})$ for $j \in \{0, 1, 2, 3\}$ are close. To see this, for $a \in \mathbb{R}$ consider

$$\lim_{x \to \infty} \cos(a\sqrt{x+1}) - \cos(a\sqrt{x}) = \lim_{x \to \infty} \sin(a\sqrt{x+1}) - \sin(a\sqrt{x}) = 0.$$

Conjectures of Andrews on partition-theoretic q-series

 Main term "wins" if not "very" close to root of cos(x) ± sin(x).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjectures of Andrews on partition-theoretic q-series

 Main term "wins" if not "very" close to root of cos(x) ± sin(x). Erdös-Turán+δ ⇒ fails ≪ √X of time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other conjectures for $V_1(n)$

Conjecture (Andrews)

For $n \ge 5$ there is an infinite sequence $N_5 = 293, N_6 = 410, N_7 = 545, N_8 = 702, \dots, N_n \ge 10n^2, \dots$ such that $V_1(N_n), V_1(N_n + 1), V_1(N_n + 2)$ all have the same sign.

Other conjectures for $V_1(n)$

Conjecture (Andrews)

For $n \ge 5$ there is an infinite sequence $N_5 = 293, N_6 = 410, N_7 = 545, N_8 = 702, \dots, N_n \ge 10n^2, \dots$ such that $V_1(N_n), V_1(N_n + 1), V_1(N_n + 2)$ all have the same sign.

Conjecture (Andrews)

The numbers $|V_1(N_n)|$, $|V_1(N_n + 1)|$, $|V_1(N_n + 2)|$ contain a local minimum of the sequence $|V_1(j)|$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of cos(x) ± sin(x).

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $cos(x) \pm sin(x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $cos(x) \pm sin(x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.

• Case I (most likely case): $\pi^2/|V| \notin \mathbb{Q}$.

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $cos(x) \pm sin(x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): π²/|V| ∉ Q.We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for v₁(n).
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $cos(x) \pm sin(x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): π²/|V| ∉ Q.We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.
- Up to 5 million coefficients (715 sign pattern failures), all of our integers are within 2 of the conjectural infinite sequence.

- Conjecture 4 seems to be explained by Conj. 3 + our asymptotic for $v_1(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $cos(x) \pm sin(x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): π²/|V| ∉ Q.We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.
- Up to 5 million coefficients (715 sign pattern failures), all of our integers are within 2 of the conjectural infinite sequence.

• Milnor
$$\implies |V| = \frac{9\sqrt{3}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)}{16\pi^2}.$$

More on these sorts of constants

• Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2kN} \mathbb{Q}$ for $n \in \mathbb{N}$, K totally real.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More on these sorts of constants

- Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2kN} \mathbb{Q}$ for $n \in \mathbb{N}$, K totally real.
- Zagier: ζ_K(2) for arbitrary number fields represented via powers of π, √disc(K) and integrals of the shape

$$A(x) = \int_0^x \frac{1}{1+t^2} \log \frac{4}{1+t^2} dt.$$

More on these sorts of constants

- Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2kN} \mathbb{Q}$ for $n \in \mathbb{N}$, K totally real.
- Zagier: ζ_K(2) for arbitrary number fields represented via powers of π, √disc(K) and integrals of the shape

$$A(x) = \int_0^x \frac{1}{1+t^2} \log \frac{4}{1+t^2} dt.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Is this a hint of a modular object involving $\mathbb{Q}(\sqrt{-3})$??

• We have a novel method for analyzing Nahm-type sums.

• We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient.

• We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking.

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We prove, or at least "explain" modulo hard irrationality questions, the conjectures of Andrews on V₁.

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."
- We prove, or at least "explain" modulo hard irrationality questions, the conjectures of Andrews on V₁. There are additional functions with similar conjectures in his paper!

Thank you!!

