WORKSHEET 1: PRACTICE ON SET THEORY

MATH 2106-D

(1) Let $X=\{1,5,8\}$ and $Y=\{1, a, b\}$. Write down the following sets:
(a) $X \cap Y$.
(b) $X \cup Y$.
(c) $\mathcal{P}(X \cap Y)$.
(d) $X \times Y$
(2) If \mathcal{I} is a set, called an index set, and for each $\alpha \in \mathcal{I}$, we have a set A_{α}, then we can consider the union and intersection

$$
\begin{gathered}
\cup_{\alpha \in \mathcal{I}} A_{\alpha}=\left\{x \mid x \in A_{\alpha} \text { for at least one } A_{\alpha} \text { with } \alpha \in \mathcal{I}\right\}, \\
\cap_{\alpha \in \mathcal{I}} A_{\alpha}=\left\{x \mid x \in A_{\alpha} \text { for every } A_{\alpha} \text { with } \alpha \in \mathcal{I}\right\} .
\end{gathered}
$$

Determine what the following sets are, and explain your answer.
(a) $\cap_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$
(b) $\cup_{n \in \mathbb{N}}\left(-\frac{1}{n}, \frac{1}{n}\right)$
(c) $\cup_{a \in \mathbb{R}}\left\{(x, y, z) \mid x^{2}+y^{2}=a^{2}, z=a\right\}$
(3) Explain why $|A \cup B|=|A|+|B|-|A \cap B|$. Can you find a similar formula for $|A \cup B \cup C|$ in terms of cardinalities of A, B, C and intersections between these sets?
${ }^{(* * *)}$ Let X be the set of all sets that are not elements of themselves, that is,

$$
X=\{A \mid A \text { is a set, } A \notin A\} .
$$

Explain why the existence of this "set" doesn't make logical sense. (Hint: Is $X \in X$?) This conundrum, known as Russell's Paradox, shows that in order to be 100% rigorous with set theory, one must be very careful when describing which sets are "allowed"; the standard resolution to this problem is to base set theory on a precise set of axioms, such as ZFC.

Handy notation cheat sheet:

- $a \in A$, read " a is in A," means that a is an element of A
- $A \subseteq B$, read " A is a subset of B," means that every element of A is also an element of B
- $A=B$, read " A equals B, " if A and B have the same elements
- $|A|$ is the cardinality, or size of A, namely the number of its elements (if A is finite; if A is infinite, one often writes $|A|=\infty$ as a shorthand, although this isn't very precise)
- \emptyset denotes the empty set, which is the only set with no elements
- $\mathbb{N}=\{1,2,3, \ldots\}$ is the set of natural numbers
- $\mathbb{Z}=\{\ldots,-3,-2,-3,0,1,2,3, \ldots\}$ is the set of integers (whole numbers)
- $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$, and $\left.b \neq 0\right\}$ is the set of rational numbers (fractions)
- \mathbb{R} is the set of real numbers
- $A \times B$ denotes the Cartesian product $A \times B=\{(a, b) \mid a \in A, b \in B\}$ consisting of ordered pairs of elements from A and B. The n-fold Cartesian product $A \times \ldots \times A$ is denoted by A^{n}.
- The notations $\mathcal{P}(A)$ and 2^{A} both denote the power set of A, namely the set of all subsets of A. That is, $\mathcal{P}(A)=\{X \mid X \subseteq A\}$.
- The union of A and B is $A \cup B=\{x \mid x \in A$ or $x \in B\}$ (where or in math always means that one or the other or both conditions hold)
- The intersection of A and B is $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- The set difference of A and B is $A \backslash B=A-B=\{x \mid x \in A$ and $x \notin B\}$
- If U is the universal set, then the complement of A is $A^{c}=\bar{A}=U \backslash A$ (i.e., the set of everything not inside of A, in whatever universal set you have given by the context)

