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Quotes

Martin Eichler: Five elementary arith. operations: +,-,×, ÷, MFs

Barry Mazur: “Modular forms are functions... that are inordinately
symmetric. They satisfy so many internal symmetries that their
mere existence seem like accidents. But they do exist.”
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Modular Forms

What are they?

Functions on H := {τ ∈ C : Im(τ) > 0}.

Slash action: f |kγ(τ) := (cτ + d)−k f ((aτ + b)/(cτ + d)).

Modularity:
1 f |kγ = f ∀γ ∈ Γ ≤ SL2(Z).
2 + growth conditions (classical: holomoprhic at “cusps”)
3 + analytic conditions (classical: holomorphic)

New Quanta article: https://tinyurl.com/vv8mcjuw

“Algebra” of adjectives: weakly, quasi, meromorphic, almost...

https://tinyurl.com/vv8mcjuw
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Modular Forms

First observations

If S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
, then SL2(Z) = 〈S ,T 〉.

So MFs in the simplest case are translation invariant functions
with the additional symmetry f (−1/τ) = τk f (τ).

Holomorphic functions with the growth rate of MFs have
Fourier expansions: f (τ) =

∑
n≥0 anq

n, q := e2πiτ .

Often in combinatorics (integer partitions, etc.), physics
(statistical mechanics, string theory...), knot theory (volume
conj.), want to determine asymptotics of sequences.
Asymptotic method work if gen. fun. is modular in any way:
f |γ = f + g , for g small, or f |γ = g1 + g2.
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Modular Forms

Examples

There are two main ways to produce modular forms.

(Method 1)

Pick a “seed” function h(τ) and average: Ph :=
∑

γ∈Γ h|γ.

These give Poincaré series when convergence issues “fixed.”
Often abs. convergence is very hard to show.

(Method 2)

Fourier analysis: Poisson summation. For lattice Λ, “nice” f ,∑
x∈Λ

f (x) = vol(Λ)−1
∑
y∈Λ∗

f (y).

Lattice sums of functions that are essentially eigenfunctions of
Fourier transf. give MFs. Example: θ(τ) :=

∑
n∈Z q

n2
.
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Modular Forms

Application 1: Identities

MFs are determined by values on a fundamental domain:

Integrating around fund. domain with Residue Theorem gives
finite dimensions for space Mk of hol. MFs of weight k .

This means that checking identities is a finite check.

Coeffs. of θ4 count ways to write n as a sum of 4 squares,
r4(n). There’s a Poincaré series too, dimension = 2 

r4(n) = 8
∑
d |n
4-d

d .

Similarly, for sums of 8 squares, r8(n) = 16
∑

d |n(−1)n+dd3.
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Modular Forms

Application 1 (cont): $100 Problem

Divisor sum: σk(n) :=
∑

d |n d
k .

Checking 1 coefficient for a square of a Poincaré series against
another Poincaré series gives

σ7(n) = σ3(n) + 120
∑

0<k<n

σ3(k)σ3(n − k).

My PhD advisor used to offer $100 for a proof without using
complex analysis.

Taking generating functions of generating functions yields
2-var. functions with modular symmetries and symmetries
under doubly-periodic shifts (Jacobi forms).

Infinitely many of these convolution ident. from finite check.
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Modular Forms

Application 2: Representation theory

McKay: Noticed that 196884 = 196883 + 1.

(Linear combinations of) dimensions of irreducible
representations of the Monster group are counted by a
weight 0 modular form j(τ) = q−1 + 744 + 196883q + O(q2).

Conway called it Monstrous Moonshine (moonshine means a
crackpot theory).

Borcherds proof earned him a Fields Medal.
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Modular Forms

Application 3: Combinatorics

Integer partition function p(n) counts number of ways to
write n as a sum of natural numbers.

For example, p(4) = 5 and the partitions are
3 + 1, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

MFs also “automatically” prove congruences, such as
Ramanujan’s p(5n + 4) ≡ 0 (mod 5).

Euler proved that∑
n≥0

p(n)qn =
∏
n≥1

(1− qn)−1,

which implies modularity.Hardy-Ramanujan used these
transformations to prove

p(n) ∼ 1

4n
√

3
eπ
√

2n/3.
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Modular Forms

Application 4: Arithmetic Geometry

Theorem (Modularity Theorem of Wiles,Taylor-Wiles, et al)

For each elliptic curve /Q, there is a special modular form whose
coeffs. determine the number of points of E over all finite fields.

Last step needed to prove Fermat’s Last Theorem:

xn + yn = zn, n ≥ 3, x , y , z ∈ N =⇒ xyz = 0.
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Modular Forms

Application 5: Algebraic Number Theory: Hilbert’s 12th
Problem

Kronecker-Weber: To find all finite abelian extensions of Q,
adjoin values of e2πix .

Kronecker Jugendtraum: To do this for imaginary quadratic
fields, use the “special function” j(τ).

This theory “explains” my favorite number:
eπ
√

163 = 262537412640768743.99999999999925 . . . ≈∈ Z.
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Modular Forms

Further applications

Don Zagier: Modular forms are everywhere.

Sphere packing: Viazovska et al. solved sphere packing in
dimensions 8, 24. She got the Fields Medal for this.

Ranks of elliptic curves and vanishing of central L-values. For
example, solving (assuming the million dollar BSD conjecture)
the Congruent Number Problem: Which numbers are areas of
rational right triangles?
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