Modular Forms

Quotes

Martin Eichler: Five elementary arith. operations:,,$+- \times, \div$, MFs

Quotes

Martin Eichler: Five elementary arith. operations:,,$+- \times, \div$, MFs

Barry Mazur: "Modular forms are functions... that are inordinately symmetric. They satisfy so many internal symmetries that their mere existence seem like accidents. But they do exist."

What are they?

- Functions on $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$.

What are they?

- Functions on $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$.
- Slash action: $\left.f\right|_{k} \gamma(\tau):=(c \tau+d)^{-k} f((a \tau+b) /(c \tau+d))$.

What are they?

- Functions on $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$.
- Slash action: $\left.f\right|_{k} \gamma(\tau):=(c \tau+d)^{-k} f((a \tau+b) /(c \tau+d))$.
- Modularity:
(1) $\left.f\right|_{k} \gamma=f \quad \forall \gamma \in \Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$.
(2) + growth conditions (classical: holomoprhic at "cusps")
(3) analytic conditions (classical: holomorphic)

What are they?

- Functions on $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{lm}(\tau)>0\}$.
- Slash action: $\left.f\right|_{k} \gamma(\tau):=(c \tau+d)^{-k} f((a \tau+b) /(c \tau+d))$.
- Modularity:
(1) $\left.f\right|_{k} \gamma=f \quad \forall \gamma \in \Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$.
(2) + growth conditions (classical: holomoprhic at "cusps")
(3) analytic conditions (classical: holomorphic)
- New Quanta article: https://tinyurl.com/vv8mcjuw

What are they?

- Functions on $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{lm}(\tau)>0\}$.
- Slash action: $\left.f\right|_{k} \gamma(\tau):=(c \tau+d)^{-k} f((a \tau+b) /(c \tau+d))$.
- Modularity:
(1) $\left.f\right|_{k} \gamma=f \quad \forall \gamma \in \Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$.
(2) + growth conditions (classical: holomoprhic at "cusps")
(3) analytic conditions (classical: holomorphic)
- New Quanta article: https://tinyurl.com/vv8mcjuw
- "Algebra" of adjectives: weakly, quasi, meromorphic, almost...

First observations

- If $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, then $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.

First observations

- If $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, then $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.
- So MFs in the simplest case are translation invariant functions with the additional symmetry $f(-1 / \tau)=\tau^{k} f(\tau)$.

First observations

- If $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, then $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.
- So MFs in the simplest case are translation invariant functions with the additional symmetry $f(-1 / \tau)=\tau^{k} f(\tau)$.
- Holomorphic functions with the growth rate of MFs have Fourier expansions: $f(\tau)=\sum_{n \geq 0} a_{n} q^{n}, q:=e^{2 \pi i \tau}$.

First observations

- If $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, then $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.
- So MFs in the simplest case are translation invariant functions with the additional symmetry $f(-1 / \tau)=\tau^{k} f(\tau)$.
- Holomorphic functions with the growth rate of MFs have Fourier expansions: $f(\tau)=\sum_{n \geq 0} a_{n} q^{n}, q:=e^{2 \pi i \tau}$.
- Often in combinatorics (integer partitions, etc.), physics (statistical mechanics, string theory...), knot theory (volume conj.), want to determine asymptotics of sequences.

First observations

- If $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, then $\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle$.
- So MFs in the simplest case are translation invariant functions with the additional symmetry $f(-1 / \tau)=\tau^{k} f(\tau)$.
- Holomorphic functions with the growth rate of MFs have Fourier expansions: $f(\tau)=\sum_{n \geq 0} a_{n} q^{n}, q:=e^{2 \pi i \tau}$.
- Often in combinatorics (integer partitions, etc.), physics (statistical mechanics, string theory...), knot theory (volume conj.), want to determine asymptotics of sequences.
Asymptotic method work if gen. fun. is modular in any way:
$f \mid \gamma=f+g$, for g small, or $f \mid \gamma=g_{1}+g_{2}$.

Examples

- There are two main ways to produce modular forms.

Examples

- There are two main ways to produce modular forms.
(Method 1)
Pick a "seed" function $h(\tau)$ and average: $P_{h}:=\sum_{\gamma \in \Gamma} h \mid \gamma$.

Examples

- There are two main ways to produce modular forms.

(Method 1)

Pick a "seed" function $h(\tau)$ and average: $P_{h}:=\sum_{\gamma \in \Gamma} h \mid \gamma$.

- These give Poincaré series when convergence issues "fixed." Often abs. convergence is very hard to show.

Examples

- There are two main ways to produce modular forms.

(Method 1)

Pick a "seed" function $h(\tau)$ and average: $P_{h}:=\sum_{\gamma \in \Gamma} h \mid \gamma$.

- These give Poincaré series when convergence issues "fixed." Often abs. convergence is very hard to show.

(Method 2)

Fourier analysis: Poisson summation. For lattice Λ, "nice" f,

$$
\sum_{x \in \Lambda} f(x)=\operatorname{vol}(\Lambda)^{-1} \sum_{y \in \Lambda^{*}} f(y) .
$$

Examples

- There are two main ways to produce modular forms.

(Method 1)

Pick a "seed" function $h(\tau)$ and average: $P_{h}:=\sum_{\gamma \in \Gamma} h \mid \gamma$.

- These give Poincaré series when convergence issues "fixed." Often abs. convergence is very hard to show.

(Method 2)

Fourier analysis: Poisson summation. For lattice Λ, "nice" f,

$$
\sum_{x \in \Lambda} f(x)=\operatorname{vol}(\Lambda)^{-1} \sum_{y \in \Lambda^{*}} f(y) .
$$

Lattice sums of functions that are essentially eigenfunctions of Fourier transf. give MFs.

Examples

- There are two main ways to produce modular forms.

(Method 1)

Pick a "seed" function $h(\tau)$ and average: $P_{h}:=\sum_{\gamma \in \Gamma} h \mid \gamma$.

- These give Poincaré series when convergence issues "fixed." Often abs. convergence is very hard to show.

(Method 2)

Fourier analysis: Poisson summation. For lattice Λ, "nice" f,

$$
\sum_{x \in \Lambda} f(x)=\operatorname{vol}(\Lambda)^{-1} \sum_{y \in \Lambda^{*}} f(y) .
$$

Lattice sums of functions that are essentially eigenfunctions of Fourier transf. give MFs. Example: $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

Application 1: Identities

- MFs are determined by values on a fundamental domain:

Application 1: Identities

- MFs are determined by values on a fundamental domain:

- Integrating around fund. domain with Residue Theorem gives finite dimensions for space M_{k} of hol. MFs of weight k.

Application 1: Identities

- MFs are determined by values on a fundamental domain:

- Integrating around fund. domain with Residue Theorem gives finite dimensions for space M_{k} of hol. MFs of weight k.
- This means that checking identities is a finite check.

Application 1: Identities

- MFs are determined by values on a fundamental domain:

- Integrating around fund. domain with Residue Theorem gives finite dimensions for space M_{k} of hol. MFs of weight k.
- This means that checking identities is a finite check.
- Coeffs. of θ^{4} count ways to write n as a sum of 4 squares, $r_{4}(n)$.

Application 1: Identities

- MFs are determined by values on a fundamental domain:

- Integrating around fund. domain with Residue Theorem gives finite dimensions for space M_{k} of hol. MFs of weight k.
- This means that checking identities is a finite check.
- Coeffs. of θ^{4} count ways to write n as a sum of 4 squares, $r_{4}(n)$. There's a Poincaré series too, dimension $=2 \rightsquigarrow$

$$
r_{4}(n)=8 \sum_{\substack{d|n \\ \psi| d}} d
$$

Similarly, for sums of 8 squares, $r_{8}(n)=16 \sum_{d \mid n}(-1)^{n+d} d^{3}$.

Application 1 (cont): \$100 Problem

- Divisor sum: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.

Application 1 (cont): \$100 Problem

- Divisor sum: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.
- Checking 1 coefficient for a square of a Poincaré series against another Poincaré series gives

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{0<k<n} \sigma_{3}(k) \sigma_{3}(n-k)
$$

Application 1 (cont): \$100 Problem

- Divisor sum: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.
- Checking 1 coefficient for a square of a Poincaré series against another Poincaré series gives

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{0<k<n} \sigma_{3}(k) \sigma_{3}(n-k)
$$

- My PhD advisor used to offer $\$ 100$ for a proof without using complex analysis.

Application 1 (cont): \$100 Problem

- Divisor sum: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.
- Checking 1 coefficient for a square of a Poincaré series against another Poincaré series gives

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{0<k<n} \sigma_{3}(k) \sigma_{3}(n-k)
$$

- My PhD advisor used to offer $\$ 100$ for a proof without using complex analysis.
- Taking generating functions of generating functions yields 2-var. functions with modular symmetries and symmetries under doubly-periodic shifts (Jacobi forms).

Application 1 (cont): \$100 Problem

- Divisor sum: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.
- Checking 1 coefficient for a square of a Poincaré series against another Poincaré series gives

$$
\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{0<k<n} \sigma_{3}(k) \sigma_{3}(n-k)
$$

- My PhD advisor used to offer $\$ 100$ for a proof without using complex analysis.
- Taking generating functions of generating functions yields 2-var. functions with modular symmetries and symmetries under doubly-periodic shifts (Jacobi forms).
- Infinitely many of these convolution ident. from finite check.

Application 2: Representation theory

- McKay: Noticed that $196884=196883+1$.

Application 2: Representation theory

- McKay: Noticed that $196884=196883+1$.
- (Linear combinations of) dimensions of irreducible representations of the Monster group are counted by a weight 0 modular form $j(\tau)=q^{-1}+744+196883 q+O\left(q^{2}\right)$.

Application 2: Representation theory

- McKay: Noticed that $196884=196883+1$.
- (Linear combinations of) dimensions of irreducible representations of the Monster group are counted by a weight 0 modular form $j(\tau)=q^{-1}+744+196883 q+O\left(q^{2}\right)$.
- Conway called it Monstrous Moonshine (moonshine means a crackpot theory).

Application 2: Representation theory

- McKay: Noticed that $196884=196883+1$.
- (Linear combinations of) dimensions of irreducible representations of the Monster group are counted by a weight 0 modular form $j(\tau)=q^{-1}+744+196883 q+O\left(q^{2}\right)$.
- Conway called it Monstrous Moonshine (moonshine means a crackpot theory).
- Borcherds proof earned him a Fields Medal.

Application 3: Combinatorics

- Integer partition function $p(n)$ counts number of ways to write n as a sum of natural numbers.

Application 3: Combinatorics

- Integer partition function $p(n)$ counts number of ways to write n as a sum of natural numbers.
- For example, $p(4)=5$ and the partitions are

$$
3+1,3+1,2+2,2+1+1,1+1+1+1
$$

Application 3: Combinatorics

- Integer partition function $p(n)$ counts number of ways to write n as a sum of natural numbers.
- For example, $p(4)=5$ and the partitions are $3+1,3+1,2+2,2+1+1,1+1+1+1$.
- MFs also "automatically" prove congruences, such as Ramanujan's $p(5 n+4) \equiv 0(\bmod 5)$.

Application 3: Combinatorics

- Integer partition function $p(n)$ counts number of ways to write n as a sum of natural numbers.
- For example, $p(4)=5$ and the partitions are $3+1,3+1,2+2,2+1+1,1+1+1+1$.
- MFs also "automatically" prove congruences, such as Ramanujan's $p(5 n+4) \equiv 0(\bmod 5)$.
- Euler proved that

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1}\left(1-q^{n}\right)^{-1}
$$

which implies modularity.

Application 3: Combinatorics

- Integer partition function $p(n)$ counts number of ways to write n as a sum of natural numbers.
- For example, $p(4)=5$ and the partitions are $3+1,3+1,2+2,2+1+1,1+1+1+1$.
- MFs also "automatically" prove congruences, such as Ramanujan's $p(5 n+4) \equiv 0(\bmod 5)$.
- Euler proved that

$$
\sum_{n \geq 0} p(n) q^{n}=\prod_{n \geq 1}\left(1-q^{n}\right)^{-1}
$$

which implies modularity.Hardy-Ramanujan used these transformations to prove

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{2 n / 3}} .
$$

Application 4: Arithmetic Geometry

Theorem (Modularity Theorem of Wiles,Taylor-Wiles, et al)
For each elliptic curve $/ \mathbb{Q}$, there is a special modular form whose coeffs. determine the number of points of E over all finite fields.

Application 4: Arithmetic Geometry

Theorem (Modularity Theorem of Wiles,Taylor-Wiles, et al)
For each elliptic curve $/ \mathbb{Q}$, there is a special modular form whose coeffs. determine the number of points of E over all finite fields.

- Last step needed to prove Fermat's Last Theorem:

$$
x^{n}+y^{n}=z^{n}, n \geq 3, x, y, z \in \mathbb{N} \Longrightarrow x y z=0
$$

Application 4: Arithmetic Geometry

Theorem (Modularity Theorem of Wiles,Taylor-Wiles, et al)
For each elliptic curve $/ \mathbb{Q}$, there is a special modular form whose coeffs. determine the number of points of E over all finite fields.

- Last step needed to prove Fermat's Last Theorem:

$$
x^{n}+y^{n}=z^{n}, n \geq 3, x, y, z \in \mathbb{N} \Longrightarrow x y z=0
$$

Application 5: Algebraic Number Theory: Hilbert's 12th Problem

- Kronecker-Weber: To find all finite abelian extensions of \mathbb{Q}, adjoin values of $e^{2 \pi i x}$.

Application 5: Algebraic Number Theory: Hilbert's 12th Problem

- Kronecker-Weber: To find all finite abelian extensions of \mathbb{Q}, adjoin values of $e^{2 \pi i x}$.
- Kronecker Jugendtraum: To do this for imaginary quadratic fields, use the "special function" $j(\tau)$.

Application 5: Algebraic Number Theory: Hilbert's 12th Problem

- Kronecker-Weber: To find all finite abelian extensions of \mathbb{Q}, adjoin values of $e^{2 \pi i x}$.
- Kronecker Jugendtraum: To do this for imaginary quadratic fields, use the "special function" $j(\tau)$.
- This theory "explains" my favorite number:

$$
e^{\pi \sqrt{163}}=262537412640768743.99999999999925 \ldots \approx \in \mathbb{Z}
$$

Further applications

- Don Zagier: Modular forms are everywhere.

Further applications

- Don Zagier: Modular forms are everywhere.
- Sphere packing: Viazovska et al. solved sphere packing in dimensions 8, 24. She got the Fields Medal for this.

Further applications

- Don Zagier: Modular forms are everywhere.
- Sphere packing: Viazovska et al. solved sphere packing in dimensions 8, 24. She got the Fields Medal for this.
- Ranks of elliptic curves and vanishing of central L-values.

Further applications

- Don Zagier: Modular forms are everywhere.
- Sphere packing: Viazovska et al. solved sphere packing in dimensions 8, 24. She got the Fields Medal for this.
- Ranks of elliptic curves and vanishing of central L-values. For example, solving (assuming the million dollar BSD conjecture) the Congruent Number Problem: Which numbers are areas of rational right triangles?

Further applications

- Don Zagier: Modular forms are everywhere.
- Sphere packing: Viazovska et al. solved sphere packing in dimensions 8, 24. She got the Fields Medal for this.
- Ranks of elliptic curves and vanishing of central L-values. For example, solving (assuming the million dollar BSD conjecture) the Congruent Number Problem: Which numbers are areas of rational right triangles?

THANK YOU!!!

