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Partitions

Definition

A partition of an integer n is a sequence of positive integers

λ1 ≥ λ2 ≥ · · · ≥ λk

such that n = λ1 + λ2 + · · ·+ λk.

p(n) is the number of partitions
of the integer n.

Example

The partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,

so p(4) = 5.
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Ramanujan congruences

Theorem (Hardy, Ramanujan, 1919)

For all n ∈ N,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).
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Combinatorial explanation?

Definition (Dyson, 1944)

For a partition λ, let `(λ) denote the largest part of λ and #λ
denote the number of parts of λ. The rank of λ is `(λ)−#λ.

Let N(m, q, n) the number of partitions of n with rank congruent
to m (mod q).

Theorem (Atkin–Swinnerton-Dyer, 1954)

The ranks for 5n+ 4 are equidistributed modulo 5, i.e.

N(0, 5, 5n+ 4) = N(1, 5, 5n+ 4) = · · · = N(4, 5, 5n+ 4).

Similarly, the ranks for 7n+ 5 are equidistributed modulo 7.
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Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence
p(11n+ 6) ≡ 0 (mod 11) as well.

Definition (Garvan, Andrews–Garvan, 1988)

For a partition λ, let `(λ) denote the largest part of λ, ω(λ)
denote the number of 1’s in λ, and µ(λ) denote the number of
parts of λ larger than ω(λ). The crank of λ is{

`(λ) if ω(λ) = 0

µ(λ)− ω(λ) if ω(λ) > 0.

Theorem (Andrews–Garvan, 1988)

The cranks for 5n+ 4, 7n+ 5, and 11n+ 6 are equidistributed
modulo 5, 7, and 11 respectively.
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Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m.
The generating function is (ζ = e2πiz, q = e2πiτ )

C(z; τ) :=

∞∑
n=0

n∑
m=−n

M(m,n)ζmqn

=
∏
n≥1

1− qn

(1− ζqn)(1− ζ−1qn)

= q
1
24 (ζ−

1
2 − ζ

1
2 )
η2(τ)

θ(z; τ)
.

For prime `, let Φ`(ζ) = 1 + ζ + · · ·+ ζ`−1.

Lemma

The equidistribution of the crank mod ` for `n+ β is equivalent to

Φ`(ζ)
∣∣∣[q`n+β]C(z; τ).
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Other partition congruences

The generating function for p(n) is

∞∑
n=0

p(n)qn =

∞∏
n=0

1

1− qn
.

For k ∈ N, we define the k-colored partition function pk(n) by

∞∑
n=0

pk(n)qn =
∞∏
n=0

1

(1− qn)k
.

Congruences pk(`n+ β) ≡ 0 (mod `)

k ≡ 0 (mod `): Working modulo `

k ≡ −1 (mod `): Euler’s pentagonal number theorem

k ≡ −3 (mod `): Jacobi’s triple product

Larry Rolen Cranks for colored partitions



Other partition congruences

The generating function for p(n) is

∞∑
n=0

p(n)qn =

∞∏
n=0

1

1− qn
.

For k ∈ N, we define the k-colored partition function pk(n) by

∞∑
n=0

pk(n)qn =

∞∏
n=0

1

(1− qn)k
.

Congruences pk(`n+ β) ≡ 0 (mod `)

k ≡ 0 (mod `): Working modulo `

k ≡ −1 (mod `): Euler’s pentagonal number theorem

k ≡ −3 (mod `): Jacobi’s triple product

Larry Rolen Cranks for colored partitions



Other partition congruences

The generating function for p(n) is

∞∑
n=0

p(n)qn =

∞∏
n=0

1

1− qn
.

For k ∈ N, we define the k-colored partition function pk(n) by

∞∑
n=0

pk(n)qn =

∞∏
n=0

1

(1− qn)k
.

Congruences pk(`n+ β) ≡ 0 (mod `)

k ≡ 0 (mod `): Working modulo `

k ≡ −1 (mod `): Euler’s pentagonal number theorem

k ≡ −3 (mod `): Jacobi’s triple product

Larry Rolen Cranks for colored partitions



Other partition congruences

The generating function for p(n) is

∞∑
n=0

p(n)qn =

∞∏
n=0

1

1− qn
.

For k ∈ N, we define the k-colored partition function pk(n) by

∞∑
n=0

pk(n)qn =

∞∏
n=0

1

(1− qn)k
.

Congruences pk(`n+ β) ≡ 0 (mod `)

k ≡ 0 (mod `): Working modulo `

k ≡ −1 (mod `): Euler’s pentagonal number theorem

k ≡ −3 (mod `): Jacobi’s triple product

Larry Rolen Cranks for colored partitions



Other partition congruences

Theorem

If ` > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod `, then

p`t−3(n) ≡ 0 (mod `).

We will use the following form of the Jacobi triple product:∏
n≥1

(1− qn)3 =
∑
n≥0

(−1)n(2n+ 1)q
n(n+1)

2 .

Proof.

Mod `, we have

∑
n≥0

p`t−3(n)q8n+1

= q
∏
n≥1

(1− q8n)3

(1− q8n)`t
≡

∑
n≥0

(−1)n(2n+ 1)q(2n+1)2∏
n≥1

(1− q8`n)t
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k-colored partition congruences

k ≡ 0 (mod `): Working modulo `

k ≡ −1 (mod `): Euler’s pentagonal number theorem

k ≡ −3 (mod `): Jacobi’s triple product

k ≡ −4,−6,−8,−10,−14,−26 (mod `): Looking at
coefficients of CM forms
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Ranks and cranks for k-colored partitions?

k = 2: Hammond–Lewis, Andrews, Garvan
k ≡ −1,−3 (mod `): Garvan
k ≡ −2,−4,−6,−8,−10,−14,−26 (mod `): ?
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Where do these congruences come from?

k ≡ −2,−4,−6,−8,−10,−14 (mod `): Macdonald identities

Theorem (Gritsenko–Skoruppa–Zagier)

Let R be an irreducible root system with a choice of positive roots
R+, and let w = 1

2

∑
r∈R+ r. Then we have

θR(z; τ) := η(τ)n−N
∏
r∈R+

θ

(
(r, z)

h
; τ

)
=

∑
x∈w+WR,ev

q
(x,x)
2h

∑
g∈GR

sn(g)e

(
(gx, z)

h

)

for all τ ∈ H and z ∈ C⊗WR. In particular, θR is a holomorphic
Jacobi form in Jn

2
,R(εn+2N ).

Important:
∑

=
∏

formulas for various root systems.

Larry Rolen Cranks for colored partitions



Where do these congruences come from?

k ≡ −2,−4,−6,−8,−10,−14 (mod `): Macdonald identities

Theorem (Gritsenko–Skoruppa–Zagier)

Let R be an irreducible root system with a choice of positive roots
R+, and let w = 1

2

∑
r∈R+ r. Then we have

θR(z; τ) := η(τ)n−N
∏
r∈R+

θ

(
(r, z)

h
; τ

)
=

∑
x∈w+WR,ev

q
(x,x)
2h

∑
g∈GR

sn(g)e

(
(gx, z)

h

)

for all τ ∈ H and z ∈ C⊗WR. In particular, θR is a holomorphic
Jacobi form in Jn

2
,R(εn+2N ).

Important:
∑

=
∏

formulas for various root systems.

Larry Rolen Cranks for colored partitions



Families of cranks

Idea: Take products of the crank generating function C(z; τ) to
obtain cranks for these congruences.

For k odd, we try the form:

Ck(a1z, a2z, · · · , a k+1
2
z; τ) := C(0; τ)

k−1
2

k+1
2∏
i=1

C(aiz; τ).

For k even: same idea.
Goal: Multiply by φR/φR = 1 for a certain theta block φR
(k (mod `) determines this).

1 Numerator: Only φR remains.

2 Denominator: Look what happens (mod Φ`(ζ)).
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Which congruences can we explain?

Reminder: For k odd,

Ck(a1z, a2z, · · · , a k+1
2
z; τ) := C(0; τ)

k−1
2

k+1
2∏
i=1

C(aiz; τ)

If there is not a congruence for k ≡ −14 (mod `), we define

Ck(z; τ) := Ck(kz, (k − 2)z, . . . , z; τ).

Otherwise, define

Ck(z; τ) := Ck((k + 2)z, (k − 2)z, . . . , z; τ).

The first definition explains all congruences coming from
k ≡ −2,−4,−6,−8,−10 (mod `), while the second explains those
coming from k ≡ −2,−4,−6,−10,−14 (mod `).
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Can we never explain all congruences simultaneously?

Let’s consider the congruences for p3(n).

We see that

3 ≡ −8 (mod 11)

3 ≡ −14 (mod 17).

C3(3z, z; τ) and C3(5z, z; τ) can’t explain both of these.
C3(3z, 2z; τ) does.
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