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Partitions

A partition of an integer n is a sequence of positive integers

A=A 2> 2> )

such that n. = A1 + Ao + - - - + Ag.
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Partitions

Definition

A partition of an integer n is a sequence of positive integers

A=A 2> 2> )

such that n = Ay + A2 + - - - + A\;. p(n) is the number of partitions
of the integer n.
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Partitions

A partition of an integer n is a sequence of positive integers

A=A 2> 2> )

such that n = Ay + A2 + - - - + A\;. p(n) is the number of partitions
of the integer n.

Example

The partitions of 4 are
4, 3+1, 242, 241+1, 1+1+4+1+1,

so p(4) = 5.
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Ramanujan congruences

Theorem (Hardy, Ramanujan, 1919)
For alln € N,

p(bn+4) =0 (mod 5),
p(Tn +5) =0 (mod 7),
p(1ln+6) =0 (mod 11).
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Combinatorial explanation?
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Combinatorial explanation?

Definition (Dyson, 1944)

For a partition A, let £(\) denote the largest part of A and #A\
denote the number of parts of A. The rank of X is £(\) — #A\.
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Combinatorial explanation?

Definition (Dyson, 1944)

For a partition A, let £(\) denote the largest part of A and #A\
denote the number of parts of A. The rank of X is £(\) — #A\.

Let N(m,q,n) the number of partitions of n with rank congruent
to m (mod q).
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Combinatorial explanation?

Definition (Dyson, 1944)

For a partition A, let £(\) denote the largest part of A and #A\
denote the number of parts of A. The rank of X is £(\) — #A\.

Let N(m,q,n) the number of partitions of n with rank congruent
to m (mod q).

Theorem (Atkin—Swinnerton-Dyer, 1954)

The ranks for 5n + 4 are equidistributed modulo 5, i.e.
N(0,5,5n+4) = N(1,5,5n+4) =--- = N(4,5,5n + 4).

Similarly, the ranks for Tn + 5 are equidistributed modulo 7.
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Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence
p(1ln+6) =0 (mod 11) as well.
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Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence
p(11n +6) =0 (mod 11) as well.

Definition (Garvan, Andrews—Garvan, 1988)

For a partition A, let £(\) denote the largest part of A, w(\)
denote the number of 1's in A\, and p(A) denote the number of
parts of A larger than w(\). The crank of X is

{E(A) if w()\) =0
A —w(A)  ifw(A) >0.
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Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence
p(11n +6) =0 (mod 11) as well.

Definition (Garvan, Andrews—Garvan, 1988)

For a partition A, let £(\) denote the largest part of A, w(\)
denote the number of 1's in A\, and p(A) denote the number of
parts of A larger than w(\). The crank of X is

{e(x) if w()\) =0
A —w(A)  ifw(A) >0.

Theorem (Andrews—Garvan, 1988)

The cranks for 5n + 4, Tn + 5, and 11n + 6 are equidistributed
modulo 5, 7, and 11 respectively.
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Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m.
The generating function is ( = e2™%, ¢ = €*™7)

n

=3 3 Mom e

n=0m=—n
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Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m.

The generating function is ( = e2™%, ¢ = €*™7)
© n 1— g
C(z;7) := M(m,n)("q" =
(ir) =2 3, Mmm™e" = 1l r—emym—=rgmy
2
_ i 1 ()
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Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m.
The generating function is ( = e2™%, ¢ = €*™7)

277 -:OO 3 m,n)("q" = 1~ ¢
1 1 2 T
= qﬂ(g—i _ (2)977(; T))

For prime #, let ®;({) =14 ¢4 -+ ¢

Lemma

The equidistribution of the crank mod ¢ for fn + (3 is equivalent to

Do(0)|[a" 7]z 7).
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Other partition congruences

The generating function for p(n) is

> = T o
n=0

n=0
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Other partition congruences

The generating function for p(n) is

[o¢] 0 1
> pma" = [ =
n=0 n=0 q
For k € N, we define the k-colored partition function pg(n) by
o0 o0
> p(n)g
n=0 n—O 1 a (]
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Other partition congruences

The generating function for p(n) is

oo (e.9]

> pma* =1 7=

For k € N, we define the k-colored partition function pg(n) by

o0

> pr(n) H
n=0

l—q

Congruences p;({n + ) =0 (mod )

m k=0 (mod ¢): Working modulo ¢
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Other partition congruences

The generating function for p(n) is

oo (e.9]

> pma* =1 7=

For k € N, we define the k-colored partition function pg(n) by

o0

> pr(n) H
n=0

l—q

Congruences p;({n + ) =0 (mod )

m k=0 (mod ¢): Working modulo ¢
m k= —1 (mod ¢): Euler's pentagonal number theorem
m k= -3 (mod ¢): Jacobi's triple product
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Other partition congruences

If £ > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod ¢, then

per—3(n) =0  (mod ¢).
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Other partition congruences

If £ > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod ¢, then

per—3(n) =0  (mod ¢).

We will use the following form of the Jacobi triple product:

[1a-am% =3 (-1ren+ 15,

n>1 n>0
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Other partition congruences

Theoremn |

If £ > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod ¢, then

per—3(n) =0  (mod ¢).

We will use the following form of the Jacobi triple product:

[T a9 =Y (-1 @n+ 1"

n>1 n>0

Proof.
Mod /¢, we have

> pu-s(n)g® !

n>0
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Other partition congruences

Theoremn |

If £ > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod ¢, then

per—3(n) =0  (mod ¢).

We will use the following form of the Jacobi triple product:

[T a9 =Y (-1 @n+ 1"

n>1 n>0

Proof.
Mod /¢, we have

Zpet—3(n)q8n+l =4 H éll:;lgn)gt

n>0 n>1
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Other partition congruences

Theoremn |

If £ > 3 is a prime and 8n+ 1 is a quadratic nonresidue mod ¢, then

per—3(n) =0  (mod ¢).

We will use the following form of the Jacobi triple product:

[T a9 =Y (-1 @n+ 1"

n>1 n>0

Proof.
Mod /¢, we have

(1—gq go(*l)"(Qn + 1)q(2n+1)2
Zp&—?)(”)qsgn“ =q H (1 — g8n)tt = [T (1—g¥n)t

n>0 n>1 all
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k-colored partition congruences

m k=0 (mod ¢): Working modulo ¢
m k= —1 (mod ¢): Euler's pentagonal number theorem

m k= —3 (mod ¢): Jacobi’s triple product
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k-colored partition congruences

m k=0 (mod ¢): Working modulo ¢

m k= —1 (mod ¢): Euler's pentagonal number theorem
m k= —3 (mod ¢): Jacobi’s triple product
mk=-4,-6,-8,—-10,—14,—26 (mod ¢):
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k-colored partition congruences

m k=0 (mod ¢): Working modulo ¢

m k= —1 (mod ¢): Euler's pentagonal number theorem

m k= —3 (mod ¢): Jacobi’s triple product

mk=-4,-6,—8,—10,—14,—26 (mod ¢): Looking at
coefficients of CM forms
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Ranks and cranks for k-colored partitions?
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Ranks and cranks for k-colored partitions?

k = 2: Hammond—Lewis, Andrews, Garvan
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Ranks and cranks for k-colored partitions?

k = 2: Hammond-Lewis, Andrews, Garvan
= —1,—-3 (mod ¢): Garvan
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Ranks and cranks for k-colored partitions?

k = 2: Hammond-Lewis, Andrews, Garvan
= —1,—-3 (mod ¢): Garvan
k=-2-4,-6,—-8,—10,—14,—26 (mod ¢): ?
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Where do these congruences come from?

=-2,-4,-6,—8,—10,—14 (mod ¢): Macdonald identities
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Where do these congruences come from?

k=-2,-4,-6,—8,—10,—14 (mod ¢): Macdonald identities

Theorem (Gritsenko—Skoruppa—Zagier)

Let R be an irreducible root system with a choice of positive roots
R*, and let w = %Zrelﬁ r. Then we have

On(z7) == n(r)"N T 6 (“‘ %)

h
reR+*

= Y Y e ()

zEW+WR eo 9€GR

for all T € H and z € C ® Wg. In particular, 0y is a holomorphic
Jacobi form in Jn p("T2N).

Important: ) = [[ formulas for various root systems.

Larry Rolen Cranks for colored partitions



Families of cranks

Idea: Take products of the crank generating function C(z;7) to
obtain cranks for these congruences.
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Families of cranks

Idea: Take products of the crank generating function C(z;7) to
obtain cranks for these congruences.
For k odd, we try the form:

Cr(arz,a2z, - ,art12;7) = C(O;T)% HC(aiz;T).

2

For k even: same idea.
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Families of cranks

Idea: Take products of the crank generating function C(z;7) to
obtain cranks for these congruences.
For k odd, we try the form:

Cr(arz,a2z, - ,art12;7) = C(O;T)% HC(CLiZ;T).

2
For k even: same idea.

Goal: Multiply by ¢r/ér = 1 for a certain theta block ¢g
(k (mod ¢) determines this).
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Families of cranks

Idea: Take products of the crank generating function C(z;7) to
obtain cranks for these congruences.
For k odd, we try the form:

Cr(arz,a2z, - ,art12;7) = C(O;T)% HC(CLiZ;T).

2

For k even: same idea.
Goal: Multiply by ¢r/ér = 1 for a certain theta block ¢g
(k (mod ¢) determines this).

Numerator: Only ¢r remains.
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Families of cranks

Idea: Take products of the crank generating function C(z;7) to
obtain cranks for these congruences.
For k odd, we try the form:

Cr(arz,a2z, - ,art12;7) = C(O;T)% HC(CLiZ;T).

2

For k even: same idea.
Goal: Multiply by ¢r/ér = 1 for a certain theta block ¢g
(k (mod ¢) determines this).

Numerator: Only ¢ remains.
Denominator: Look what happens (mod ®,(()).
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Which congruences can we explain?

Reminder: For k odd,

kbl
2
k-1
Cr(a1z, a2z, - ,G%Z;T) =C(0;7) 2 H C(aiz;T)
i=1

Larry Rolen Cranks for colored partitions



Which congruences can we explain?

Reminder: For k odd,

k+1
2
Cr(arz,a2z, - ;ar12;7) :=C(0;7) = | | Cla;z;T)
2
i=1

If there is not a congruence for kK = —14 (mod /), we define

Ci(z;7) :=Cr(kz, (k—2)z,...,2;7).
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Which congruences can we explain?

Reminder: For k odd,

k+1
2
Cr(arz,a2z, - ;ar12;7) :=C(0;7) = | | Cla;z;T)
2
i=1

If there is not a congruence for kK = —14 (mod /), we define
Ci(z;7) :=Cr(kz, (k—2)z,...,2;7).
Otherwise, define

Cr(z;7) :=Cp((k+2)z,(k —2)z,...,2;7T).
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Which congruences can we explain?

Reminder: For k odd,

k+1
2
Cr(arz,a2z, - ;ar12;7) :=C(0;7) = | | Cla;z;T)
2
i=1

If there is not a congruence for kK = —14 (mod /), we define
Cr(z;7) :=Cr(kz,(k—2)z,...,2;7).
Otherwise, define
Cr(z;7) :=Cp((k+2)z,(k —2)z,...,2;7T).

The first definition explains all congruences coming from
=-2,-4,-6,—8,—10 (mod ¢), while the second explains those
coming from k= —2,—4,—6,—10,—14 (mod /).
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Can we never explain all congruences simultaneously?

Let's consider the congruences for ps3(n).
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Can we never explain all congruences simultaneously?

Let's consider the congruences for ps(n). We see that

= -8 (mod 11)
=—14 (mod 17).
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Can we never explain all congruences simultaneously?

Let's consider the congruences for ps(n). We see that

= -8 (mod 11)
=—14 (mod 17).

C3(3z, z;7) and C3(5z, z; 7) can't explain both of these.
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Can we never explain all congruences simultaneously?

Let's consider the congruences for ps(n). We see that

= -8 (mod 11)
=—14 (mod 17).

Cs3(3z,2;7) and C3(5z, z; T) can't explain both of these.
Cs3(3z,2z;7) does.
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Can we never explain all congruences simultaneously?

Let's consider the congruences for ps(n). We see that

= -8 (mod 11)
=—14 (mod 17).

Cs3(3z,2;7) and C3(5z, z; T) can't explain both of these.
Cs3(3z,2z;7) does.
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