Cranks for colored partitions

Larry Rolen

Vanderbilt University

October 11, 2020

Larry Rolen Cranks for colored partitions

イロン イヨン イヨン イヨン

э

Partitions

Definition

A partition of an integer n is a sequence of positive integers

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$$

such that $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$.

イロン イヨン イヨン イヨン

Partitions

Definition

A partition of an integer n is a sequence of positive integers

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$$

such that $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$. p(n) is the number of partitions of the integer n.

Partitions

Definition

A partition of an integer n is a sequence of positive integers

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$$

such that $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$. p(n) is the number of partitions of the integer n.

Example

The partitions of 4 are

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1,$

so p(4) = 5.

Ramanujan congruences

Theorem (Hardy, Ramanujan, 1919)

For all $n \in \mathbb{N}$,

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

イロン イヨン イヨン イヨン

Larry Rolen Cranks for colored partitions

イロン イロン イヨン イヨン

Definition (Dyson, 1944)

For a partition λ , let $\ell(\lambda)$ denote the largest part of λ and $\#\lambda$ denote the number of parts of λ . The *rank* of λ is $\ell(\lambda) - \#\lambda$.

Definition (Dyson, 1944)

For a partition λ , let $\ell(\lambda)$ denote the largest part of λ and $\#\lambda$ denote the number of parts of λ . The *rank* of λ is $\ell(\lambda) - \#\lambda$.

Let N(m,q,n) the number of partitions of n with rank congruent to $m \pmod{q}$.

Definition (Dyson, 1944)

For a partition λ , let $\ell(\lambda)$ denote the largest part of λ and $\#\lambda$ denote the number of parts of λ . The *rank* of λ is $\ell(\lambda) - \#\lambda$.

Let N(m,q,n) the number of partitions of n with rank congruent to $m \pmod{q}$.

Theorem (Atkin-Swinnerton-Dyer, 1954)

The ranks for 5n + 4 are equidistributed modulo 5, i.e.

 $N(0, 5, 5n + 4) = N(1, 5, 5n + 4) = \dots = N(4, 5, 5n + 4).$

Similarly, the ranks for 7n + 5 are equidistributed modulo 7.

イロト イポト イヨト

Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence $p(11n + 6) \equiv 0 \pmod{11}$ as well.

Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence $p(11n + 6) \equiv 0 \pmod{11}$ as well.

Definition (Garvan, Andrews-Garvan, 1988)

For a partition λ , let $\ell(\lambda)$ denote the largest part of λ , $\omega(\lambda)$ denote the number of 1's in λ , and $\mu(\lambda)$ denote the number of parts of λ larger than $\omega(\lambda)$. The *crank* of λ is

$$\begin{cases} \ell(\lambda) & \text{if } \omega(\lambda) = 0\\ \mu(\lambda) - \omega(\lambda) & \text{if } \omega(\lambda) > 0. \end{cases}$$

イロト イポト イヨト

Conjecture (Dyson, 1944)

There is a combinatorial statistic that describes the congruence $p(11n + 6) \equiv 0 \pmod{11}$ as well.

Definition (Garvan, Andrews-Garvan, 1988)

For a partition λ , let $\ell(\lambda)$ denote the largest part of λ , $\omega(\lambda)$ denote the number of 1's in λ , and $\mu(\lambda)$ denote the number of parts of λ larger than $\omega(\lambda)$. The *crank* of λ is

$$\begin{cases} \ell(\lambda) & \text{if } \omega(\lambda) = 0\\ \mu(\lambda) - \omega(\lambda) & \text{if } \omega(\lambda) > 0. \end{cases}$$

Theorem (Andrews–Garvan, 1988)

The cranks for 5n + 4, 7n + 5, and 11n + 6 are equidistributed modulo 5, 7, and 11 respectively.

Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m. The generating function is ($\zeta = e^{2\pi i z}$, $q = e^{2\pi i \tau}$)

$$\mathcal{C}(z;\tau) := \sum_{n=0}^{\infty} \sum_{m=-n}^{n} M(m,n) \zeta^{m} q^{n}$$

イロト イボト イヨト

Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m. The generating function is ($\zeta = e^{2\pi i z}$, $q = e^{2\pi i \tau}$)

$$\begin{aligned} \mathcal{C}(z;\tau) &:= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} M(m,n) \zeta^{m} q^{n} = \prod_{n \ge 1} \frac{1-q^{n}}{(1-\zeta q^{n})(1-\zeta^{-1}q^{n})} \\ &= q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^{2}(\tau)}{\theta(z;\tau)}. \end{aligned}$$

イロト イボト イヨト

Reframing equidistribution

Let M(m,n) denote the number of partitions of n with crank m. The generating function is ($\zeta = e^{2\pi i z}$, $q = e^{2\pi i \tau}$)

$$\begin{split} \mathcal{C}(z;\tau) &:= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} M(m,n) \zeta^{m} q^{n} = \prod_{n \ge 1} \frac{1-q^{n}}{(1-\zeta q^{n})(1-\zeta^{-1}q^{n})} \\ &= q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^{2}(\tau)}{\theta(z;\tau)}. \end{split}$$

For prime
$$\ell$$
, let $\Phi_{\ell}(\zeta) = 1 + \zeta + \cdots + \zeta^{\ell-1}$.

Lemma

The equidistribution of the crank mod ℓ for $\ell n + \beta$ is equivalent to

$$\Phi_{\ell}(\zeta) \Big| [q^{\ell n+\beta}] \mathcal{C}(z;\tau).$$

イロト イポト イヨト

The generating function for $\boldsymbol{p}(\boldsymbol{n})$ is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=0}^{\infty} \frac{1}{1-q^n}.$$

イロン イヨン イヨン イヨン

The generating function for $\boldsymbol{p}(\boldsymbol{n})$ is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=0}^{\infty} \frac{1}{1-q^n}.$$

For $k \in \mathbb{N}$, we define the k-colored partition function $p_k(n)$ by

$$\sum_{n=0}^{\infty} p_k(n) q^n = \prod_{n=0}^{\infty} \frac{1}{(1-q^n)^k}.$$

The generating function for $\boldsymbol{p}(\boldsymbol{n})$ is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=0}^{\infty} \frac{1}{1-q^n}.$$

For $k \in \mathbb{N}$, we define the k-colored partition function $p_k(n)$ by

$$\sum_{n=0}^{\infty} p_k(n) q^n = \prod_{n=0}^{\infty} \frac{1}{(1-q^n)^k}.$$

Congruences $p_k(\ell n + \beta) \equiv 0 \pmod{\ell}$

• $k \equiv 0 \pmod{\ell}$: Working modulo ℓ

イロト イポト イヨト

The generating function for p(n) is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=0}^{\infty} \frac{1}{1-q^n}.$$

For $k \in \mathbb{N}$, we define the k-colored partition function $p_k(n)$ by

$$\sum_{n=0}^{\infty} p_k(n) q^n = \prod_{n=0}^{\infty} \frac{1}{(1-q^n)^k}.$$

Congruences $p_k(\ell n + \beta) \equiv 0 \pmod{\ell}$

- $k \equiv 0 \pmod{\ell}$: Working modulo ℓ
- $k \equiv -1 \pmod{\ell}$: Euler's pentagonal number theorem
- $k \equiv -3 \pmod{\ell}$: Jacobi's triple product

Theorem

If $\ell > 3$ is a prime and 8n + 1 is a quadratic nonresidue mod ℓ , then

 $p_{\ell t-3}(n) \equiv 0 \pmod{\ell}.$

イロト イボト イヨト

Theorem

If $\ell > 3$ is a prime and 8n + 1 is a quadratic nonresidue mod ℓ , then

$$p_{\ell t-3}(n) \equiv 0 \pmod{\ell}.$$

We will use the following form of the Jacobi triple product:

$$\prod_{n\geq 1} (1-q^n)^3 = \sum_{n\geq 0} (-1)^n (2n+1)q^{\frac{n(n+1)}{2}}.$$

Theorem

If $\ell > 3$ is a prime and 8n + 1 is a quadratic nonresidue mod ℓ , then

$$p_{\ell t-3}(n) \equiv 0 \pmod{\ell}.$$

We will use the following form of the Jacobi triple product:

$$\prod_{n \ge 1} (1 - q^n)^3 = \sum_{n \ge 0} (-1)^n (2n + 1) q^{\frac{n(n+1)}{2}}.$$

Proof.

Mod $\ell\text{,}$ we have

$$\sum_{n\geq 0} p_{\ell t-3}(n) q^{8n+1}$$

Theorem

If $\ell > 3$ is a prime and 8n + 1 is a quadratic nonresidue mod ℓ , then

$$p_{\ell t-3}(n) \equiv 0 \pmod{\ell}.$$

We will use the following form of the Jacobi triple product:

$$\prod_{n \ge 1} (1 - q^n)^3 = \sum_{n \ge 0} (-1)^n (2n + 1) q^{\frac{n(n+1)}{2}}.$$

Proof.

Mod $\ell\text{,}$ we have

$$\sum_{n \ge 0} p_{\ell t-3}(n) q^{8n+1} = q \prod_{n \ge 1} \frac{(1-q^{8n})^3}{(1-q^{8n})^{\ell t}}$$

Theorem

If $\ell > 3$ is a prime and 8n + 1 is a quadratic nonresidue mod ℓ , then

$$p_{\ell t-3}(n) \equiv 0 \pmod{\ell}.$$

We will use the following form of the Jacobi triple product:

$$\prod_{n \ge 1} (1 - q^n)^3 = \sum_{n \ge 0} (-1)^n (2n + 1) q^{\frac{n(n+1)}{2}}.$$

Proof.

Mod $\ell,$ we have

$$\sum_{n \ge 0} p_{\ell t-3}(n) q^{8n+1} = q \prod_{n \ge 1} \frac{(1-q^{8n})^3}{(1-q^{8n})^{\ell t}} \equiv \frac{\sum_{n \ge 0} (-1)^n (2n+1) q^{(2n+1)^2}}{\prod_{n \ge 1} (1-q^{8\ell n})^t}$$

k-colored partition congruences

- $k \equiv 0 \pmod{\ell}$: Working modulo ℓ
- $k \equiv -1 \pmod{\ell}$: Euler's pentagonal number theorem
- $k \equiv -3 \pmod{\ell}$: Jacobi's triple product

イロト イポト イヨト

k-colored partition congruences

- $k \equiv 0 \pmod{\ell}$: Working modulo ℓ
- $k \equiv -1 \pmod{\ell}$: Euler's pentagonal number theorem
- $k \equiv -3 \pmod{\ell}$: Jacobi's triple product
- $k \equiv -4, -6, -8, -10, -14, -26 \pmod{\ell}$:

イロト 不得 トイヨト イヨト 二日

k-colored partition congruences

- $k \equiv 0 \pmod{\ell}$: Working modulo ℓ
- $k \equiv -1 \pmod{\ell}$: Euler's pentagonal number theorem
- $k \equiv -3 \pmod{\ell}$: Jacobi's triple product
- $k \equiv -4, -6, -8, -10, -14, -26 \pmod{\ell}$: Looking at coefficients of CM forms

イロト 不得 トイヨト イヨト 二日

Larry Rolen Cranks for colored partitions

イロン 不同 とくほど 不良 とう

k = 2: Hammond–Lewis, Andrews, Garvan

イロト イポト イヨト イヨト

k=2: Hammond–Lewis, Andrews, Garvan $k\equiv -1,-3 \pmod{\ell}$: Garvan

イロト イポト イヨト イヨト

$$k = 2$$
: Hammond-Lewis, Andrews, Garvan
 $k \equiv -1, -3 \pmod{\ell}$: Garvan
 $k \equiv -2, -4, -6, -8, -10, -14, -26 \pmod{\ell}$: ?

イロン イボン イモン イモン 一日

Where do these congruences come from?

 $k \equiv -2, -4, -6, -8, -10, -14 \pmod{\ell}$: Macdonald identities

メロト メタトメモト メモト 三日

Where do these congruences come from?

 $k\equiv -2,-4,-6,-8,-10,-14 \pmod{\ell}$: Macdonald identities

Theorem (Gritsenko–Skoruppa–Zagier)

Let R be an irreducible root system with a choice of positive roots R^+ , and let $w=\frac{1}{2}\sum_{r\in R^+}r.$ Then we have

$$\begin{aligned} \theta_R(z;\tau) &:= \eta(\tau)^{n-N} \prod_{r \in R^+} \theta\left(\frac{(r,z)}{h};\tau\right) \\ &= \sum_{x \in w + W_{R,ev}} q^{\frac{(x,x)}{2h}} \sum_{g \in G_R} \operatorname{sn}(g) e\left(\frac{(gx,z)}{h}\right) \end{aligned}$$

for all $\tau \in \mathbb{H}$ and $z \in \mathbb{C} \otimes W_R$. In particular, θ_R is a holomorphic Jacobi form in $J_{\frac{n}{2},\underline{R}}(\epsilon^{n+2N})$.

Important: $\sum = \prod$ formulas for various root systems.

医脊髓下的 医下颌下的 医

Idea: Take products of the crank generating function $C(z; \tau)$ to obtain cranks for these congruences.

イロト イポト イヨト イヨト

Idea: Take products of the crank generating function $C(z; \tau)$ to obtain cranks for these congruences. For k odd, we try the form:

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau).$$

For k even: same idea.

Idea: Take products of the crank generating function $C(z; \tau)$ to obtain cranks for these congruences. For k odd, we try the form:

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau).$$

For k even: same idea. **Goal:** Multiply by $\phi_R/\phi_R = 1$ for a certain theta block ϕ_R (k (mod ℓ) determines this).

イロン 不同 とくほ とくほう

Idea: Take products of the crank generating function $C(z; \tau)$ to obtain cranks for these congruences. For k odd, we try the form:

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau).$$

For k even: same idea.

Goal: Multiply by $\phi_R/\phi_R = 1$ for a certain theta block ϕ_R ($k \pmod{\ell}$) determines this).

1 Numerator: Only ϕ_R remains.

Idea: Take products of the crank generating function $C(z; \tau)$ to obtain cranks for these congruences. For k odd, we try the form:

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau).$$

For k even: same idea.

Goal: Multiply by $\phi_R/\phi_R = 1$ for a certain theta block ϕ_R ($k \pmod{\ell}$) determines this).

- **1** Numerator: Only ϕ_R remains.
- **2** Denominator: Look what happens $(\mod \Phi_{\ell}(\zeta))$.

Reminder: For k odd,

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau)$$

イロン イタン イヨン イヨン 二日

Reminder: For k odd,

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau)$$

If there is not a congruence for $k\equiv -14 \pmod{\ell},$ we define

$$\mathcal{C}_k(z;\tau) := \mathcal{C}_k(kz, (k-2)z, \dots, z;\tau).$$

イロト イボト イヨト

3

Reminder: For k odd,

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau)$$

If there is not a congruence for $k\equiv -14 \pmod{\ell},$ we define

$$\mathcal{C}_k(z;\tau) := \mathcal{C}_k(kz, (k-2)z, \dots, z;\tau).$$

Otherwise, define

$$\mathcal{C}_k(z;\tau) := \mathcal{C}_k((k+2)z, (k-2)z, \dots, z;\tau).$$

イロト イボト イヨト

3

Reminder: For k odd,

$$C_k(a_1z, a_2z, \cdots, a_{\frac{k+1}{2}}z; \tau) := C(0; \tau)^{\frac{k-1}{2}} \prod_{i=1}^{\frac{k+1}{2}} C(a_iz; \tau)$$

If there is not a congruence for $k\equiv -14 \pmod{\ell},$ we define

$$\mathcal{C}_k(z;\tau) := \mathcal{C}_k(kz, (k-2)z, \dots, z; \tau).$$

Otherwise, define

$$\mathcal{C}_k(z;\tau) := \mathcal{C}_k((k+2)z, (k-2)z, \dots, z;\tau).$$

The first definition explains all congruences coming from $k \equiv -2, -4, -6, -8, -10 \pmod{\ell}$, while the second explains those coming from $k \equiv -2, -4, -6, -10, -14 \pmod{\ell}$.

イロト 不同 トイヨト イヨト

Let's consider the congruences for $p_3(n)$.

イロト イポト イヨト イヨト

Let's consider the congruences for $p_3(n)$. We see that

 $3 \equiv -8 \pmod{11}$ $3 \equiv -14 \pmod{17}.$

イロト イポト イヨト イヨト

3

Let's consider the congruences for $p_3(n)$. We see that

 $3 \equiv -8 \pmod{11}$ $3 \equiv -14 \pmod{17}.$

 $\mathcal{C}_3(3z,z;\tau)$ and $\mathcal{C}_3(5z,z;\tau)$ can't explain both of these.

Let's consider the congruences for $p_3(n)$. We see that

 $3 \equiv -8 \pmod{11}$ $3 \equiv -14 \pmod{17}.$

 $\mathcal{C}_3(3z,z;\tau)$ and $\mathcal{C}_3(5z,z;\tau)$ can't explain both of these. $\mathcal{C}_3(3z,2z;\tau)$ does.

Let's consider the congruences for $p_3(n)$. We see that

 $3 \equiv -8 \pmod{11}$ $3 \equiv -14 \pmod{17}.$

 $\mathcal{C}_3(3z,z;\tau)$ and $\mathcal{C}_3(5z,z;\tau)$ can't explain both of these. $\mathcal{C}_3(3z,2z;\tau)$ does.