Ramanujan’s Deathbed Letter

Larry Rolen

Emory University
The great anticipator of mathematics

Srinivasa Ramanujan (1887-1920)
Dear Hardy,

“I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call “Mock” \(\vartheta\)-functions. Unlike the “False” \(\vartheta\)-functions (partially studied by Rogers), they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some examples.”

Ramanujan, January 12, 1920.
The first example

\[f(q) = 1 + \frac{q}{(1 + q)^2} + \frac{q^4}{(1 + q)^2(1 + q^2)^2} + \cdots \]
Ramanujan's deathbed letter

Freeman Dyson (1987)

"The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered. . . . This remains a challenge for the future..."
“The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered.
“The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered....This remains a challenge for the future...”
In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

Ramanujan's mock theta functions are holomorphic parts of weight 1/2 harmonic Maass forms.
The future is now

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.
In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.
- Stitched them together give non-holomorphic Jacobi forms.
In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- “Lerch-type” series and Mordell integrals.
- Stitched them together give non-holomorphic Jacobi forms.

Theorem

Ramanujan’s mock theta functions are holomorphic parts of weight 1/2 harmonic Maass forms.
Notation. Throughout, let $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.
Defining Maass forms

Notation. Throughout, let \(z = x + iy \in \mathbb{H} \) with \(x, y \in \mathbb{R} \).

Hyperbolic Laplacian.

\[
\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).
\]
Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying:

1. For all $A \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z})$ we have
 $$f \left(\frac{az+b}{cz+d} \right) = t^{k} f(z)$$

2. We have that $\Delta^k f = 0$.
Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying:

1. For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z})$ we have

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z).$$
Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying:

1. For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z})$ we have

 $$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z).$$

2. We have that $\Delta_k f = 0$.

Remark:

Modular forms are holomorphic functions which satisfy (1).
“Definition”

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying:

1. For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset \text{SL}_2(\mathbb{Z})$ we have

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k \ f(z).$$

2. We have that $\Delta_k f = 0$.

Remark

Modular forms are holomorphic functions which satisfy (1).
HMFs have two parts ($q := e^{2\pi iz}$)

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ-function, then

$$f(z) = \sum_{n \gg -\infty} c_f^+(n)q^n + \sum_{n < 0} c_f^-(n)\Gamma(k - 1, 4\pi |n|y)q^n.$$

\uparrow

Holomorphic part f^+ \quad \uparrow

Nonholomorphic part f^-
Ramanujan’s deathbed letter

Maass forms

HMFs have two parts \((q := e^{2\pi i z})\)

Fundamental Lemma

If \(f \in H_{2-k}\) and \(\Gamma(a, x)\) is the incomplete \(\Gamma\)-function, then

\[
f(z) = \sum_{n \gg -\infty} c_f^+(n) q^n + \sum_{n < 0} c_f^-(n) \Gamma(k - 1, 4\pi |n| y) q^n.
\]

\[\uparrow\]

Holomorphic part \(f^+\) Nonholomorphic part \(f^-\)

Remark

The mock theta functions are examples of \(f^+\).
So many recent applications

- q-series and partitions
- Modular L-functions (e.g. BSD numbers)
- Eichler-Shimura Theory
- Probability models
- Generalized Borcherds Products
- Moonshine for affine Lie superalgebras and M_{24}
- Donaldson invariants
- Black holes
- ...
Ramanujan's deathbed letter
Is there more?

Is there more?
Ramanujan’s deathbed letter
Is there more?

Is there more?

Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian” modular forms.
Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian” modular forms.

- Raises one question and conjectures the answer.
Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian” modular forms.
- Raises **one** question and conjectures the answer.
- Gives **one example** supporting his conjectured answer.
Ramanujan’s last letter.

- Asymptotics, near roots of unity, of “Eulerian” modular forms.

- Raises one question and conjectures the answer.

- Gives one example supporting his conjectured answer.

- Concludes with a list of his mock theta functions.
Ramanujan’s question

Question (Ramanujan)

Must Eulerian series with “similar asymptotics” be the sum of a modular form and a function which is $O(1)$ at all roots of unity?
The answer is *it is not necessarily so.*

When it is not so I call the function Mock D-function. I have not proved rigorously that it is not necessarily so. But I have constructed a number of examples in which it is not in conceivable to construct a D-function to cut out the singularities.
Ramanujan’s “Example”

If I have proved that if

$$f(q) = 1 + \frac{q^4}{(1+q)^2(1+q^2)^2} + \ldots$$

then

$$f(q) + (1-q)(1-q^3)(1-q^5)\ldots \in \mathbb{O}(1-2q+2q^2-2q^9+\ldots)$$

at all the

$$= \mathbb{O}(1)$$

at all the points

$$q\equiv -1, q^3\equiv -1, q^5\equiv -1, q^7\equiv -1, \ldots$$

and at the same time

$$f(q) \in (1-q)(1-q^3)(1-q^5)\ldots(1-2q+2q^2-\ldots)$$

$$= \mathbb{O}(1)$$

at all the points

$$q^2\equiv -1, q^4\equiv -1, q^6\equiv -1, \ldots$$

Also obviously

$$f(q) = \mathbb{O}(1)$$

at all the points

$$q\equiv 1, q^2\equiv 1, q^5\equiv 1, \ldots$$
Ramanujan’s “Near Miss Example”

Define the mock theta $f(q)$ and the modular form $b(q)$ by

\[
f(q) := 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1 + q)^2(1 + q^2)^2 \cdots (1 + q^n)^2},
\]

\[
b(q) := (1 - q)(1 - q^3)(1 - q^5) \cdots \times (1 - 2q + 2q^4 - 2q^9 + \cdots).
\]
Ramanujan’s “Near Miss Example”

Define the mock theta $f(q)$ and the modular form $b(q)$ by

$$f(q) := 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1 + q)^2(1 + q^2)^2 \cdots (1 + q^n)^2},$$

$$b(q) := (1 - q)(1 - q^3)(1 - q^5) \cdots \times (1 - 2q + 2q^4 - 2q^9 + \cdots).$$

Conjecture (Ramanujan)

If q approaches an even order $2k$ root of unity, then

$$f(q) - (-1)^k b(q) = O(1).$$
Ramanujan’s deathbed letter
Is there more?

Numerics
As \(q \to -1 \), we have

\[
\begin{align*}
 f(-0.994) &\sim -1 \cdot 10^{31}, \\
 f(-0.996) &\sim -1 \cdot 10^{46}, \\
 f(-0.998) &\sim -6 \cdot 10^{90},
\end{align*}
\]
As $q \to -1$, we have

\[f(-0.994) \sim -1 \cdot 10^{31}, \quad f(-0.996) \sim -1 \cdot 10^{46}, \quad f(-0.998) \sim -6 \cdot 10^{90}, \]

\[f(-0.998185) \sim -\text{Googol} \]
Ramanujan’s deathbed letter
Is there more?

Numerics continued...
Amasingly, Ramanujan’s guess gives:

<table>
<thead>
<tr>
<th>q</th>
<th>-0.990</th>
<th>-0.992</th>
<th>-0.994</th>
<th>-0.996</th>
<th>-0.998</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(q) + b(q)$</td>
<td>3.961...</td>
<td>3.969...</td>
<td>3.976...</td>
<td>3.984...</td>
<td>3.992...</td>
</tr>
</tbody>
</table>
Numerics continued...

Amazingly, Ramanujan’s guess gives:

<table>
<thead>
<tr>
<th>q</th>
<th>-0.990</th>
<th>-0.992</th>
<th>-0.994</th>
<th>-0.996</th>
<th>-0.998</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(q) + b(q)$</td>
<td>$3.961\ldots$</td>
<td>$3.969\ldots$</td>
<td>$3.976\ldots$</td>
<td>$3.984\ldots$</td>
<td>$3.992\ldots$</td>
</tr>
</tbody>
</table>

This suggests that

$$\lim_{{q \to -1}} (f(q) + b(q)) = 4.$$
As \(q \to i \)
As $q \to i$

<table>
<thead>
<tr>
<th>q</th>
<th>0.992i</th>
<th>0.994i</th>
<th>0.996i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(q)$</td>
<td>$2 \cdot 10^6 - 4.6 \cdot 10^6i$</td>
<td>$2 \cdot 10^8 - 4 \cdot 10^8i$</td>
<td>$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$</td>
</tr>
<tr>
<td>$f(q) - b(q)$</td>
<td>$\sim 0.05 + 3.85i$</td>
<td>$\sim 0.04 + 3.89i$</td>
<td>$\sim 0.03 + 3.92i$</td>
</tr>
</tbody>
</table>
As $q \to i$

<table>
<thead>
<tr>
<th>q</th>
<th>$0.992i$</th>
<th>$0.994i$</th>
<th>$0.996i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(q)$</td>
<td>$2 \cdot 10^6 - 4.6 \cdot 10^6i$</td>
<td>$2 \cdot 10^8 - 4 \cdot 10^8i$</td>
<td>$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$</td>
</tr>
<tr>
<td>$f(q) - b(q)$</td>
<td>$\sim 0.05 + 3.85i$</td>
<td>$\sim 0.04 + 3.89i$</td>
<td>$\sim 0.03 + 3.92i$</td>
</tr>
</tbody>
</table>

This suggests that

$$\lim_{q\to i}(f(q) - b(q)) = 4i.$$
Ramanujan’s deathbed letter
Is there more?

Natural Questions
If he is right, then what are the mysterious $O(1)$ numbers in

$$
\lim_{q \to \zeta} (f(q) - (-1)^kb(q)) = O(1)?
$$
Finite sums of roots of unity.
Finite sums of roots of unity.

Theorem (Folsom, Ono, Rhoades)

If \(\zeta \) is an even \(2k \) order root of unity, then

\[
\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1 + \zeta)^2 (1 + \zeta^2)^2 \cdots (1 + \zeta^n)^2 \zeta^{n+1}.
\]
Finite sums of roots of unity.

Theorem (Folsom, Ono, Rhoades)

If ζ is an even $2k$ order root of unity, then

$$\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1 + \zeta)^2 (1 + \zeta^2)^2 \cdots (1 + \zeta^n)^2 \zeta^{n+1}.$$

Remark

This Theorem follows from “quantum” modularity.
“it is inconceivable to construct a \(\vartheta \) function to cut out the singularities of a mock theta function...”

Srinivasa Ramanujan
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function…”

Srinivasa Ramanujan

“...it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)
Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function...”

Srinivasa Ramanujan

“...it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)

Theorem (G-Ono-Rolen (2013))

Ramanujan’s examples satisfy his own definition.
Ramanujan’s last words

“it is inconceivable to construct a \(\vartheta \) function to cut out the singularities of a mock theta function…”

Srinivasa Ramanujan

“...it has not been proved that any of Ramanujan’s mock theta functions really are mock theta functions according to his definition.”

Bruce Berndt (2012)

Theorem (G-Ono-Rolen (2013))

Ramanujan’s examples satisfy his own definition. More precisely, a mock theta function and a modular form never cut out exactly the same singularities.