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Ranks, cranks, and new directions in partitions

Recalling Definitions

Definition

An integer partition of n is a sequence of positive integers
λ1 ≥ λ2 ≥ . . . ≥ λk such that

λ1 + . . .+ λk = n.

We denote the number of partitions of n by p(n).

Definition (Dyson 1944)

rank(λ) = largest part λ1 −# of parts k.

Definition (Andrews-Garvan, 1988)

crank(λ) :=

{
largest part of λ if no 1’s in λ,

(# parts larger than # of 1’s)− (# of 1’s) else.
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Ranks, cranks, and new directions in partitions

Recall: equidistribution of ranks and cranks

Theorem (Conjecture of Dyson 1944, proven by Atkin and
Swinnerton-Dyer in 1954)

We have

N(0, 5; 5n + 4) = N(1, 5; 5n + 4) = . . . = N(4, 5; 5n + 4).

Similarly for ranks mod 7 for partitions of 7n + 5.

Theorem (Andrews-Garvan, 1988)

Cranks “explain” Ramanujan’s congruences mod 5, 7, and 11.
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Building to Stanton’s Conjecutre

Elementary Fact

The equidistribution for cranks mod ` on a progression `n + β is
equivalent to

Φ`(ζ)|[q`n+β]C (z ; τ).

Here, Φ` is the `-th cyclotomic polynomial, and divisibility is as
Laurent polynomials.

Lemma

Let f (ζ) be a rational Laurent polynomial and ` be prime. Set
f̂r ,` :=

∑
j≡r (mod `)[ζ

j ]f (ζ). Then

Φ`|f (ζ) ⇐⇒ f̂r ,` = f̂`−1,`, r ∈ {0, . . . , `− 2}.
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Proof of Elementary Fact

Proof.

1 Multiply by a big power of ζ and use gcd(ζ,Φ`(ζ)) = 1 to
assume f (ζ) ∈ Q[ζ].

2 Since Φ`(ζ) is irreducible over Q[ζ], divis.is equiv.to f (ζ`) = 0.

3 If f (ζ) =:
∑n

j=0 ajζ
j ,

f (ζ`) =
n∑

j=0

ajζ
`
j =

`−1∑
r=0

∑
0≤j≤n

j≡r (mod `)

ajζ
r
` =

`−1∑
r=0

f̂r ,`ζ
r
`

=
`−2∑
r=0

(
f̂r ,` − f̂`−1,`

)
ζr`

4 Claim follows as {1, ζ`, . . . , ζ`−2` } is a basis for Q[ζ]/Q.
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Recalling Stanton’s Conjecture

Definition (Stanton)

The modified rank and crank are:

rank∗`,n(ζ) := rank`n+β + ζ`n+β−2 − ζ`n+β−1 + ζ2−`n−β − ζ1−`n−β,

crank∗`,n(ζ) := crank`n+β(ζ) + ζ`n+β−`− ζ`n+β + ζ`−`n−β− ζ−`n−β,

where β := `− `2−1
24 .

Conjecture (Stanton)

All of the following are Laurent polynomials with positive
coefficients:

rank∗5,n(ζ)

Φ5(ζ)
,

rank∗7,n(ζ)

Φ7(ζ)
,

crank∗5,n(ζ)

Φ5(ζ)
,

crank∗7,n(ζ)

Φ7(ζ)
,

crank∗11,n(ζ)

Φ11(ζ)
.
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Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)

The crank part of Stanton’s Conjecture is true.

Proof.

1 We know that crank∗`n+β(ζ)/Φ`(ζ) ∈ Z(()).

2 Since Φ`(ζ) = (1− ζ`)/(1− ζ), this quotient is(
1

1− ζ`

)
crank∗`n+β(ζ)(1− ζ).

3 Thus, its enough to know that the coefficients of
crank∗`n+β(ζ) are symmetric under ζ 7→ ζ−1. and unimodal.

4 Symmetry is direct form gen. fun. Reduced to finite check by
Ji-Zang: M(m − 1, n) ≥ M(m, n) if n ≥ 44, 1 ≤ m ≤ n − 1.
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The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as∑
n≥0

pk(n)qn =: (q)−k∞ .

There are various known Ramanujan-like congruences:
1 When k ≡ 0 (mod `):  Freshmen’s Dream/“work mod `.”
2 When k ≡ −1 (mod `):  Pentagonal Number Theorem.
3 When k ≡ −3 (mod `):  Jacobi Triple Product.
4 When k ≡ −4,−6,−8,−10,−14,−26 (mod `):  Boylan

found these using CM modular forms.
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An example

Example

If ` > 3 is prime and 8n + 1 is a quadratic non-residue modulo
`, then p`t−3(n) ≡ 0 (mod `).

To see this, use the Jacobi Triple Product identity:

(q)3∞ =
∑
n≥0

(−1)n(2n + 1)q(n+1
2 ).

Thus, ∑
n≥0

p`t−3(n)q8n+1 = q
(q8; q8)3∞
(q8; q8)`t∞

≡
∑

n≥0(−1)n(2n + 1)q(2n+1)2

(q8`; q8`)t∞
(mod `).
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Family of new crank functions

Definition

Let k be odd (we’ll skip the even k).

For any vector a ∈ N
k+1
2 ,

define the product of crank functions which specialize to η−k when
ζ = 1, where C(z ; τ) is the crank generating function:

Ck(a1, . . . , a k+1
2

) := C (0; τ)
k−1
2

k+1
2∏

j=1

C (aiz ; τ).

Theorem (Tripp-R.-Wagner 2020)

There is an infinite family of crank functions Ck(z ; τ)which explain
“most” congruences of colored partitions.
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Theta blocks

Definition

An eta quotient is a modular form of the form

ηa1(b1τ) · . . . · ηak (bkτ)

ηc1(d1τ) · . . . · ηck (d`τ)
.

These have many applications for building up modular forms
spaces;E.g., It is easy to compute expansions at cusps.

Definition (Gritsenko-Skoruppa-Zagier)

Let ϑa(z) := ϑ(az ; τ). Then a theta block is a holomorphic Jacobi
form of the shape:

ϑa1(z) · . . . · ϑak (z)

ϑb1(z) · . . . · ϑb`(z)
· ηn, ai , bi ∈ N , n ∈ Z.
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Examples of theta blocks

Example

We have the following Quintuple Product Identity:

ϑ2(z)

ϑ(z)
η =

∑
n∈Z

(−1)nq
(6n+1)2

24

(
ζ3n+

1
2 + ζ−3n−

1
2

)
.

Example

Gritsenko-Skoruppa-Zagier defined the family of theta quarks as

ϑ∗(z) :=
ϑa(z)ϑb(z)ϑa+b(z)

η
= −

∑
m,n∈Z

q
m2+mn+n2

3 ζ(a−b)m+an.

The difficult problem is to find long θ products which can be
divided by large η-powers and remain holomorphic.
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Jacobi forms

Definition

For an integral lattice L = (L, β) with a symm. non-degen. bilinear
form β, a Jacobi form of weight k, index L and character εh of
ηh is

a holomorphic function φ(z ; τ), z ∈ C⊗ L, τ ∈ H:

φ

(
z

cτ + d
; γτ

)
= e

(
cβ(z)

cτ + d

)
(cτ + d)k−

h
2 εh(γ)φ(z ; τ)

φ(z + xτ + y ; τ) = e(β(x + y)− τβ(x)− β(x , z))φ(z ; τ).

for γ =

(
a b
c d

)
∈ SL2(Z), x , y ∈ L and has Fourier expansion:

φ(z ; τ) =
∑

n∈ h
24
+Z

∑
r∈L•

n≥β(r)

c(n, r)e(β(r , z))qn.



Ranks, cranks, and new directions in partitions

Jacobi forms

Definition

For an integral lattice L = (L, β) with a symm. non-degen. bilinear
form β, a Jacobi form of weight k, index L and character εh of
ηh is a holomorphic function φ(z ; τ), z ∈ C⊗ L, τ ∈ H:

φ

(
z

cτ + d
; γτ

)
= e

(
cβ(z)

cτ + d

)
(cτ + d)k−

h
2 εh(γ)φ(z ; τ)

φ(z + xτ + y ; τ) = e(β(x + y)− τβ(x)− β(x , z))φ(z ; τ).

for γ =

(
a b
c d

)
∈ SL2(Z), x , y ∈ L and has Fourier expansion:

φ(z ; τ) =
∑

n∈ h
24
+Z

∑
r∈L•

n≥β(r)

c(n, r)e(β(r , z))qn.



Ranks, cranks, and new directions in partitions

Jacobi forms

Definition

For an integral lattice L = (L, β) with a symm. non-degen. bilinear
form β, a Jacobi form of weight k, index L and character εh of
ηh is a holomorphic function φ(z ; τ), z ∈ C⊗ L, τ ∈ H:

φ

(
z

cτ + d
; γτ

)
= e

(
cβ(z)

cτ + d

)
(cτ + d)k−

h
2 εh(γ)φ(z ; τ)

φ(z + xτ + y ; τ) = e(β(x + y)− τβ(x)− β(x , z))φ(z ; τ).

for γ =

(
a b
c d

)
∈ SL2(Z), x , y ∈ L and has Fourier expansion:

φ(z ; τ) =
∑

n∈ h
24
+Z

∑
r∈L•

n≥β(r)

c(n, r)e(β(r , z))qn.



Ranks, cranks, and new directions in partitions

Jacobi forms

Definition

For an integral lattice L = (L, β) with a symm. non-degen. bilinear
form β, a Jacobi form of weight k, index L and character εh of
ηh is a holomorphic function φ(z ; τ), z ∈ C⊗ L, τ ∈ H:

φ

(
z

cτ + d
; γτ

)
= e

(
cβ(z)

cτ + d

)
(cτ + d)k−

h
2 εh(γ)φ(z ; τ)

φ(z + xτ + y ; τ) = e(β(x + y)− τβ(x)− β(x , z))φ(z ; τ).

for γ =

(
a b
c d

)
∈ SL2(Z), x , y ∈ L

and has Fourier expansion:

φ(z ; τ) =
∑

n∈ h
24
+Z

∑
r∈L•

n≥β(r)

c(n, r)e(β(r , z))qn.



Ranks, cranks, and new directions in partitions

Jacobi forms

Definition

For an integral lattice L = (L, β) with a symm. non-degen. bilinear
form β, a Jacobi form of weight k, index L and character εh of
ηh is a holomorphic function φ(z ; τ), z ∈ C⊗ L, τ ∈ H:

φ

(
z

cτ + d
; γτ

)
= e

(
cβ(z)

cτ + d

)
(cτ + d)k−

h
2 εh(γ)φ(z ; τ)

φ(z + xτ + y ; τ) = e(β(x + y)− τβ(x)− β(x , z))φ(z ; τ).

for γ =

(
a b
c d

)
∈ SL2(Z), x , y ∈ L and has Fourier expansion:

φ(z ; τ) =
∑

n∈ h
24
+Z

∑
r∈L•

n≥β(r)

c(n, r)e(β(r , z))qn.



Ranks, cranks, and new directions in partitions

Eutactic stars

Definition

A eutactic star of rank N on a lattice L is a family s of non-zero
vectors sj ∈ L#(1 ≤ j ≤ N) such that

x =
N∑
j=1

β(sj , x)sj ∀x ∈ Q⊗ L.

Definition

Let G ⊆ O(L) with the property that for each g ∈ G there exists a
permutation σ of the indices 1 ≤ j ≤ N and signs εj ∈ {±1} such
that gsj = εjsσ(j) ∀j . Define the linear character sn : G → {±1} by

sn(g) :=
∏
j

εj .
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Eutactic stars

The shadow of L is

L• := {r ∈ Q⊗ L : β(x) ≡ β(r , x) (mod Z) for all x ∈ L}.

The kernel of the map x 7→ β(x) ∈ Hom(L,Q/Z) is denoted
by Lev .

Definition

A eutactic star is G -extremal on L if there is exactly one G -orbit
in L•/Lev whose elements have their stabilizers in the kernel of sn.
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A product to sum theorem

Theorem (Gritsenko-Skoruppa-Zagier)

Let L = (L, β) be an integral lattice of rank n, let s be a
G -extremal eutactic star of rank N on L. Then there is a constant
γ and a vector w ∈ L• such that

η(τ)n−N
N∏
j=1

θ(β(sj , z); τ) = γ
∑

x∈w+Lev

qβ(x)
∑
g∈G

sn(g)e(β(gx , z)).

In particular, the product on the left defines an element of
J n

2
,L(εn+2N).



Ranks, cranks, and new directions in partitions

Root systems

Definition

A root system R with associated Euclidean space ER with inner
product (·, ·) is a finite set of non-zero vectors (roots) that satisfy
the following:

1 The roots span ER .

2 The only scalar multiples of r ∈ R in R are ±r .

3 For any two r , v ∈ R, we have 2 (r ,v)
(r ,r) ∈ Z.

4 For any two r , v ∈ R, we have sr (v) := v − 2 (r ,v)
(r ,r) ∈ R.
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Root systems

Let R be a root system of rank n and R+ be a system of
positive roots of R.

Let FR denote the subset of simple roots in R+.

Let h := 1
n

∑
r∈R+(r , r).

Define the lattice

WR :=

{
x ∈ ER :

(x , r)

h
∈ Z for all r ∈ R

}
and set R :=

(
Wr ,

(·,·)
h

)
.

Let GR be the Weyl group; the group generated by all of the
sr for r ∈ R.



Ranks, cranks, and new directions in partitions

Root systems

Let R be a root system of rank n and R+ be a system of
positive roots of R.

Let FR denote the subset of simple roots in R+.

Let h := 1
n

∑
r∈R+(r , r).

Define the lattice

WR :=

{
x ∈ ER :

(x , r)

h
∈ Z for all r ∈ R

}
and set R :=

(
Wr ,

(·,·)
h

)
.

Let GR be the Weyl group; the group generated by all of the
sr for r ∈ R.



Ranks, cranks, and new directions in partitions

Root systems

Let R be a root system of rank n and R+ be a system of
positive roots of R.

Let FR denote the subset of simple roots in R+.

Let h := 1
n

∑
r∈R+(r , r).

Define the lattice

WR :=

{
x ∈ ER :

(x , r)

h
∈ Z for all r ∈ R

}
and set R :=

(
Wr ,

(·,·)
h

)
.

Let GR be the Weyl group; the group generated by all of the
sr for r ∈ R.



Ranks, cranks, and new directions in partitions

Root systems

Let R be a root system of rank n and R+ be a system of
positive roots of R.

Let FR denote the subset of simple roots in R+.

Let h := 1
n

∑
r∈R+(r , r).

Define the lattice

WR :=

{
x ∈ ER :

(x , r)

h
∈ Z for all r ∈ R

}
and set R :=

(
Wr ,

(·,·)
h

)
.

Let GR be the Weyl group; the group generated by all of the
sr for r ∈ R.



Ranks, cranks, and new directions in partitions

Root systems

Let R be a root system of rank n and R+ be a system of
positive roots of R.

Let FR denote the subset of simple roots in R+.

Let h := 1
n

∑
r∈R+(r , r).

Define the lattice

WR :=

{
x ∈ ER :

(x , r)

h
∈ Z for all r ∈ R

}
and set R :=

(
Wr ,

(·,·)
h

)
.

Let GR be the Weyl group; the group generated by all of the
sr for r ∈ R.



Ranks, cranks, and new directions in partitions

Product to sum theorem for root systems

Theorem (Gritsenko-Skoruppa-Zagier)

Assume the previous notation. Then R+ is a eutactic star on R
and is extremal with respect to GR .

Theorem

Let R be an irreducible root system with a choice of positive roots
R+, and let w = 1

2

∑
r∈R+ r . Then we have

θR(z ; τ) := η(τ)n−|R
+|
∏
r∈R+

θ

(
(r , z)

h
; τ

)
=

∑
x∈w+WR,ev

q
(x,x)
2h

∑
g∈GR

sn(g)e

(
(gx , z)

h

)

for all τ ∈ H and z ∈ C⊗WR . θR is in J n
2
,R(εn+2N).
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Some pictures

[Wikimedia User:Maksim]
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Weight one theta blocks

J1,m(εh) is spanned by specializations of φR for
h = 4, 6, 8, 10, 14.

J1,m(ε2) contains theta blocks but is not necessarily spanned
by them.
J1,m(εh) = 0 for all other h (mod 24).

h R φR(z ; τ)

2 A1 ⊕ A1 ϑ∗(z1)ϑ∗(z2)

4 A1 ⊕ A1 ϑ(z1)ϑ∗(z2)

6 A1 ⊕ A1 ϑ(z1)ϑ(z2)

8 A2 η−1ϑ(z1)ϑ(z2)ϑ(z1 + z2)

10 B2 η−2ϑ(z1)ϑ(z2)ϑ(z1 + z2)ϑ(z1 + 2z2)

14 G2 η−4ϑ(z1)ϑ(z2)ϑ(z1 + z2)ϑ(2z1 + z2)ϑ(3z1 + z2)ϑ(3z1 + 2z2)
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An example: R = B2

The root system B2 has Euclidean space EB2 = R2.

We can choose

B+
2 = {(1,−1), (0, 1), (1, 0), (1, 1)}

= {r1, r2, r3 = r1 + r2, r4 = r1 + 2r2},
FB2 = {r1, r2}.

A calculation shows GB2 = {±Id ,±sr1sr2 ,±sr1 ,±sr2} ∼= D4 with

sn(±Id) = sn(±sr1sr2) = 1, sn(±sr1) = sn(±sr2) = −1.

We find h = 3 and w =
(
3
2 ,

1
2

)
.
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sn(±Id) = sn(±sr1sr2) = 1, sn(±sr1) = sn(±sr2) = −1.

We find h = 3 and w =
(
3
2 ,

1
2

)
.
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An example: R = B2

WB2 =

{
x ∈ R2 :

(x , r)

3
∈ Z ∀r ∈ B2

}
= {x = (x1, x2) ∈ Z2 : x1 ≡ x2 ≡ 0 (mod 3)}

WB2,ev =

{
x ∈WB2 :

(x , x)

6
∈ Z

}
= {(x1, x2) ∈ Z2 : x1 ≡ x2 ≡ 0 (mod 3), x1 ≡ x2 (mod 2)}.

x = (x1, x2) = x1r1 + (x1 + x2)r2, compute action on simple roots:

±Id(x) = ± [x1r1 + (x1 + x2)r2] ,

±sr1sr2(x) = ± [−x2r1 + (x1 − x2)r2] ,

±sr1(x) = ± [x2r1 + (x1 + x2)r2] ,

±sr2(x) = ± [x1r1 + (x1 − x2)r2] .
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An example: R = B2

We make the changes of variable z1 = (r1,z)
3 and z2 = (r2,z)

3 to
obtain

θB2(z ; τ) = η(τ)−2θ(z1; τ)θ(z2; τ)θ(z1 + z2; τ)θ(z1 + 2z2; τ)

=
∑

x∈( 3
2
, 1
2)+Z2

x1≡x2≡0 (mod 3)
x1≡x2 (mod 2)

q
x21+x22

6

×
[
ζx11 ζ

x1+x2
2 + ζ−x11 ζ−x1−x22 + ζ−x21 ζx1−x22 + ζx21 ζ

−x1+x2
2

−ζx21 ζ
x1+x2
2 − ζ−x21 ζ−x1−x22 − ζx11 ζ

x1−x2
2 − ζ−x11 ζ−x1+x2

2

]
.
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An application to colored partitions

Let

Ck(a1z , a2z , . . . , a k+δodd(k)

2

z ; τ) := C(0; τ)
k−δodd(k)

2

k+δodd(k)

2∏
i=1

C(aiz ; τ),

where C(z ; τ) :=
∏

n≥1
1−qn

(1−ζqn)(1−ζ−1qn)

and define

Ck(z ; τ) := Ck(kz , (k − 2)z , . . . , (2− δodd(k))z ; τ)

=
∏
n≥1

1− δodd(k)qn

(1− ζ±kqn)(1− ζ±(k−2)qn) · · · (1− ζ±(2−δodd(k))qn)
.

Notice that

Ck(0; τ) = Pk(τ) :=
∑
n≥0

pk(n)qn =
∏
n≥1

1

(1− qn)k
.
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An example of the above theorem

Let Φ`(ζ) denote the `-th cyclotomic polynomial.

Theorem (R.-Tripp-W)

Suppose k ≡ −10 (mod `) for a prime ` ≡ 3 (mod 4). Then for
n ≥ 0 we have the divisibility relation

Φ`(ζ)

∣∣∣∣ [q`n+5 `
2−1
12

]
Ck(z ; τ).

Corollary

Suppose k ≡ −10 (mod `) for a prime ` ≡ 3 (mod 4). Then we
have the Ramanujan-type congruence

pk

(
`n + 5

`2 − 1

12

)
≡ 0 (mod `).
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Proof

The discussion of θB2 shows that∏
n≥1

(1−qn)2(1−ζ±11 qn)(1−ζ±12 qn)(1−(ζ1ζ2)±1qn)(1−(ζ1ζ
2
2 )±1qn)

vanishes at the coefficient [q`n+5 `
2−1
12 ] when ζ1 and ζ2 are set

to `-th roots of unity.

Set z1 = 4z and z2 = 2z then multiply the numerator and
denominator of Ck(z ; τ) by the above product.

The denominator factors into terms of the form
1− q`n + Φ`(ζ) · f (z ; τ) for some function f .

The numerator is the above product which we have shown is
divisible by Φ`(ζ) on the q-exponents we’re concerned with.
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Stanton-type Conjectures for k-colored partitions

Theorem (Bringmann-Gomez-R.-Tripp, 2021)

There are families of Stanton-type conjectures that appear to hold
for these families.
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Numerical Examples
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Thank you!!!


