Ranks, cranks, and new directions in partitions

Larry Rolen

Vanderbilt University

October 19, 2021
Oregon State University Number Theory Seminar

Recalling Definitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Recalling Definitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.
Definition (Dyson 1944)
$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

Recalling Definitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.
Definition (Andrews-Garvan, 1988)

$$
\operatorname{crank}(\lambda):= \begin{cases}\text { largest part of } \lambda & \text { if no } 1 \text { 's in } \lambda, \\ (\# \text { parts larger than \# of } 1 \text { 's })-(\# \text { of } 1 \text { 's }) & \text { else. }\end{cases}
$$

Recall: equidistribution of ranks and cranks

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Recall: equidistribution of ranks and cranks

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

Recall: equidistribution of ranks and cranks

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

Theorem (Andrews-Garvan, 1988)
Cranks "explain" Ramanujan's congruences mod 5, 7, and 11.

Building to Stanton's Conjecutre

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

Building to Stanton's Conjecutre

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Building to Stanton's Conjecutre

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

Building to Stanton's Conjecutre

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

Lemma

Let $f(\zeta)$ be a rational Laurent polynomial and ℓ be prime. Set $\widehat{f}_{r, \ell}:=\sum_{j \equiv r(\bmod \ell)}\left[\zeta^{j}\right] f(\zeta)$. Then

$$
\Phi_{\ell} \mid f(\zeta) \Longleftrightarrow \widehat{f}_{r, \ell}=\widehat{f}_{\ell-1, \ell}, \quad r \in\{0, \ldots, \ell-2\}
$$

Proof of Elementary Fact

Proof.

(1) Multiply by a big power of ζ and use $\operatorname{gcd}\left(\zeta, \Phi_{\ell}(\zeta)\right)=1$ to assume $f(\zeta) \in \mathbb{Q}[\zeta]$.

Proof of Elementary Fact

Proof.

(1) Multiply by a big power of ζ and use $\operatorname{gcd}\left(\zeta, \Phi_{\ell}(\zeta)\right)=1$ to assume $f(\zeta) \in \mathbb{Q}[\zeta]$.
(2) Since $\Phi_{\ell}(\zeta)$ is irreducible over $\mathbb{Q}[\zeta]$, divis.is equiv.to $f\left(\zeta_{\ell}\right)=0$.

Proof of Elementary Fact

Proof.

(1) Multiply by a big power of ζ and use $\operatorname{gcd}\left(\zeta, \Phi_{\ell}(\zeta)\right)=1$ to assume $f(\zeta) \in \mathbb{Q}[\zeta]$.
(2) Since $\Phi_{\ell}(\zeta)$ is irreducible over $\mathbb{Q}[\zeta]$, divis.is equiv.to $f\left(\zeta_{\ell}\right)=0$.
(3) If $f(\zeta)=: \sum_{j=0}^{n} a_{j} \zeta^{j}$,

$$
\begin{gathered}
f\left(\zeta_{\ell}\right)=\sum_{j=0}^{n} a_{j} \zeta_{j}^{\ell}=\sum_{r=0}^{\ell-1} \sum_{\substack{0 \leq j \leq n \\
(\bmod \ell)}} a_{j} \zeta_{\ell}^{r}=\sum_{r=0}^{\ell-1} \widehat{f}_{r, \ell} \zeta_{\ell}^{r} \\
=\sum_{r=0}^{\ell-2}\left(\widehat{f}_{r, \ell}-\widehat{f}_{\ell-1, \ell)} \zeta_{\ell}^{r}\right.
\end{gathered}
$$

Proof of Elementary Fact

Proof.

(1) Multiply by a big power of ζ and use $\operatorname{gcd}\left(\zeta, \Phi_{\ell}(\zeta)\right)=1$ to assume $f(\zeta) \in \mathbb{Q}[\zeta]$.
(2) Since $\Phi_{\ell}(\zeta)$ is irreducible over $\mathbb{Q}[\zeta]$, divis.is equiv.to $f\left(\zeta_{\ell}\right)=0$.
(3) If $f(\zeta)=: \sum_{j=0}^{n} a_{j} \zeta^{j}$,

$$
\begin{gathered}
f\left(\zeta_{\ell}\right)=\sum_{j=0}^{n} a_{j} \zeta_{j}^{\ell}=\sum_{r=0}^{\ell-1} \sum_{\substack{0 \leq j \leq n \\
j \equiv r}} a_{j} \zeta_{\ell}^{r}=\sum_{r=0}^{\ell-1} \widehat{f}_{r, \ell} \zeta_{\ell}^{r} \\
=\sum_{r=0}^{\ell-2}\left(\widehat{f}_{r, \ell}-\widehat{f}_{\ell-1, \ell}\right) \zeta_{\ell}^{r}
\end{gathered}
$$

(4) Claim follows as $\left\{1, \zeta_{\ell}, \ldots, \zeta_{\ell}^{\ell-2}\right\}$ is a basis for $\mathbb{Q}[\zeta] / \mathbb{Q}$.

Recalling Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$
\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}
$$

Recalling Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Recalling Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Conjecture (Stanton)

All of the following are Laurent polynomials with positive coefficients:

$$
\frac{\operatorname{rank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \frac{\operatorname{rank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \frac{\operatorname{crank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{11, n}^{*}(\zeta)}{\Phi_{11}(\zeta)}
$$

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.
Proof.
(1) We know that $\operatorname{crank}_{\ell n+\beta}^{*}(\zeta) / \Phi_{\ell}(\zeta) \in \mathbb{Z}(())$.

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Proof.

(1) We know that $\operatorname{crank}_{\ell n+\beta}^{*}(\zeta) / \Phi_{\ell}(\zeta) \in \mathbb{Z}(())$.
(2) Since $\Phi_{\ell}(\zeta)=\left(1-\zeta^{\ell}\right) /(1-\zeta)$, this quotient is

$$
\left(\frac{1}{1-\zeta^{\ell}}\right) \operatorname{crank}_{\ell n+\beta}^{*}(\zeta)(1-\zeta) .
$$

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.

Proof.

(1) We know that $\operatorname{crank}_{\ell n+\beta}^{*}(\zeta) / \Phi_{\ell}(\zeta) \in \mathbb{Z}(())$.
(2) Since $\Phi_{\ell}(\zeta)=\left(1-\zeta^{\ell}\right) /(1-\zeta)$, this quotient is

$$
\left(\frac{1}{1-\zeta^{\ell}}\right) \operatorname{crank}_{\ell n+\beta}^{*}(\zeta)(1-\zeta) .
$$

(3) Thus, its enough to know that the coefficients of $\operatorname{crank}^{*}{ }_{\ell n+\beta}(\zeta)$ are symmetric under $\zeta \mapsto \zeta^{-1}$. and unimodal.

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)

The crank part of Stanton's Conjecture is true.

Proof.

(1) We know that $\operatorname{crank}_{\ell n+\beta}^{*}(\zeta) / \Phi_{\ell}(\zeta) \in \mathbb{Z}(())$.
(2) Since $\Phi_{\ell}(\zeta)=\left(1-\zeta^{\ell}\right) /(1-\zeta)$, this quotient is

$$
\left(\frac{1}{1-\zeta^{\ell}}\right) \operatorname{crank}_{\ell n+\beta}^{*}(\zeta)(1-\zeta) .
$$

(3) Thus, its enough to know that the coefficients of $\operatorname{crank}^{*}{ }_{n+\beta}(\zeta)$ are symmetric under $\zeta \mapsto \zeta^{-1}$. and unimodal.
(3) Symmetry is direct form gen. fun. Reduced to finite check by Ji-Zang: $M(m-1, n) \geq M(m, n)$ if $n \geq 44,1 \leq m \leq n-1$.

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell)$:

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell)$:

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell)$:

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.
(4) When $k \equiv-4,-6,-8,-10,-14,-26(\bmod \ell)$:

The case of k-colored partitions

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/ "work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.
(9) When $k \equiv-4,-6,-8,-10,-14,-26(\bmod \ell): \rightsquigarrow$ Boylan found these using CM modular forms.

An example

Example

- If $\ell>3$ is prime and $8 n+1$ is a quadratic non-residue modulo ℓ, then $p_{\ell t-3}(n) \equiv 0(\bmod \ell)$.

An example

Example

- If $\ell>3$ is prime and $8 n+1$ is a quadratic non-residue modulo ℓ, then $p_{\ell t-3}(n) \equiv 0(\bmod \ell)$.
- To see this, use the Jacobi Triple Product identity:

$$
(q)_{\infty}^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\binom{n+1}{2}} .
$$

An example

Example

- If $\ell>3$ is prime and $8 n+1$ is a quadratic non-residue modulo ℓ, then $p_{\ell t-3}(n) \equiv 0(\bmod \ell)$.
- To see this, use the Jacobi Triple Product identity:

$$
(q)_{\infty}^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\binom{n+1}{2}} .
$$

- Thus,

$$
\begin{aligned}
& \sum_{n \geq 0} p_{\ell t-3}(n) q^{8 n+1}=q \frac{\left(q^{8} ; q^{8}\right)_{\infty}^{3}}{\left(q^{8} ; q^{8}\right)_{\infty}^{\ell t}} \\
\equiv & \frac{\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{(2 n+1)^{2}}}{\left(q^{8 \ell} ; q^{8 \ell}\right)_{\infty}^{t}} \quad(\bmod \ell) .
\end{aligned}
$$

Family of new crank functions

Definition

Let k be odd (we'll skip the even k).

Family of new crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$, where $C_{(z ; \tau)}$ is the crank generating function:

Family of new crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$, where $C_{(z ; \tau)}$ is the crank generating function:

$$
C_{k}\left(a_{1}, \ldots, a_{\frac{k+1}{2}}\right):=C(0 ; \tau)^{\frac{k-1}{2}} \prod_{j=1}^{\frac{k+1}{2}} C\left(a_{i} z ; \tau\right) .
$$

Family of new crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$, where $\left.C_{(z ;} \tau\right)$ is the crank generating function:

$$
C_{k}\left(a_{1}, \ldots, a_{\frac{k+1}{2}}\right):=C(0 ; \tau)^{\frac{k-1}{2}} \prod_{j=1}^{\frac{k+1}{2}} C\left(a_{i} z ; \tau\right)
$$

Theorem (Tripp-R.-Wagner 2020)
There is an infinite family of crank functions $C_{k}(z ; \tau)$ which explain "most" congruences of colored partitions.

Theta blocks

Definition

An eta quotient is a modular form of the form

$$
\frac{\eta^{a_{1}}\left(b_{1} \tau\right) \cdot \ldots \cdot \eta^{a_{k}}\left(b_{k} \tau\right)}{\eta^{c_{1}}\left(d_{1} \tau\right) \cdot \ldots \cdot \eta^{c_{k}}\left(d_{\ell} \tau\right)} .
$$

Theta blocks

Definition

An eta quotient is a modular form of the form

$$
\frac{\eta^{a_{1}}\left(b_{1} \tau\right) \cdot \ldots \cdot \eta^{a_{k}}\left(b_{k} \tau\right)}{\eta^{c_{1}}\left(d_{1} \tau\right) \cdot \ldots \cdot \eta^{c_{k}}\left(d_{\ell} \tau\right)} .
$$

- These have many applications for building up modular forms spaces;

Theta blocks

Definition

An eta quotient is a modular form of the form

$$
\frac{\eta^{a_{1}}\left(b_{1} \tau\right) \cdot \ldots \cdot \eta^{a_{k}}\left(b_{k} \tau\right)}{\eta^{c_{1}}\left(d_{1} \tau\right) \cdot \ldots \cdot \eta^{c_{k}}\left(d_{\ell} \tau\right)} .
$$

- These have many applications for building up modular forms spaces;E.g., It is easy to compute expansions at cusps.

Theta blocks

Definition

An eta quotient is a modular form of the form

$$
\frac{\eta^{a_{1}}\left(b_{1} \tau\right) \cdot \ldots \cdot \eta^{a_{k}}\left(b_{k} \tau\right)}{\eta^{c_{1}}\left(d_{1} \tau\right) \cdot \ldots \cdot \eta^{c_{k}}\left(d_{\ell} \tau\right)}
$$

- These have many applications for building up modular forms spaces;E.g., It is easy to compute expansions at cusps.

Definition (Gritsenko-Skoruppa-Zagier)

Let $\vartheta_{a}(z):=\vartheta(a z ; \tau)$. Then a theta block is a holomorphic Jacobi form of the shape:

$$
\frac{\vartheta_{a_{1}}(z) \cdot \ldots \cdot \vartheta_{a_{k}}(z)}{\vartheta_{b_{1}}(z) \cdot \ldots \cdot \vartheta_{b_{\ell}}(z)} \cdot \eta^{n}, \quad a_{i}, b_{i} \in \mathbb{N}, n \in \mathbb{Z} .
$$

Examples of theta blocks

Example

We have the following Quintuple Product Identity:

$$
\frac{\vartheta_{2}(z)}{\vartheta(z)} \eta=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{(6 n+1)^{2}}{24}}\left(\zeta^{3 n+\frac{1}{2}}+\zeta^{-3 n-\frac{1}{2}}\right)
$$

Examples of theta blocks

Example

We have the following Quintuple Product Identity:

$$
\frac{\vartheta_{2}(z)}{\vartheta(z)} \eta=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{(6 n+1)^{2}}{24}}\left(\zeta^{3 n+\frac{1}{2}}+\zeta^{-3 n-\frac{1}{2}}\right)
$$

Example

Gritsenko-Skoruppa-Zagier defined the family of theta quarks as

$$
\vartheta^{*}(z):=\frac{\vartheta_{a}(z) \vartheta_{b}(z) \vartheta_{a+b}(z)}{\eta}=-\sum_{m, n \in \mathbb{Z}} q^{\frac{m^{2}+m n+n^{2}}{3}} \zeta^{(a-b) m+a n}
$$

Examples of theta blocks

Example

We have the following Quintuple Product Identity:

$$
\frac{\vartheta_{2}(z)}{\vartheta(z)} \eta=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\frac{(6 n+1)^{2}}{24}}\left(\zeta^{3 n+\frac{1}{2}}+\zeta^{-3 n-\frac{1}{2}}\right)
$$

Example

Gritsenko-Skoruppa-Zagier defined the family of theta quarks as

$$
\vartheta^{*}(z):=\frac{\vartheta_{a}(z) \vartheta_{b}(z) \vartheta_{a+b}(z)}{\eta}=-\sum_{m, n \in \mathbb{Z}} q^{\frac{m^{2}+m n+n^{2}}{3}} \zeta^{(a-b) m+a n}
$$

- The difficult problem is to find long θ products which can be divided by large η-powers and remain holomorphic.

Jacobi forms

Definition

For an integral lattice $\underline{L}=(L, \beta)$ with a symm. non-degen. bilinear form β, a Jacobi form of weight k, index \underline{L} and character ε^{h} of η^{h} is

Jacobi forms

Definition

For an integral lattice $\underline{L}=(L, \beta)$ with a symm. non-degen. bilinear form β, a Jacobi form of weight k, index \underline{L} and character ε^{h} of η^{h} is a holomorphic function $\phi(z ; \tau), z \in \mathbb{C} \otimes L, \tau \in \mathbb{H}$:

Jacobi forms

Definition

For an integral lattice $\underline{L}=(L, \beta)$ with a symm. non-degen. bilinear form β, a Jacobi form of weight k, index \underline{L} and character ε^{h} of η^{h} is a holomorphic function $\phi(z ; \tau), z \in \mathbb{C} \otimes L, \tau \in \mathbb{H}$:

$$
\phi\left(\frac{z}{c \tau+d} ; \gamma \tau\right)=e\left(\frac{c \beta(z)}{c \tau+d}\right)(c \tau+d)^{k-\frac{h}{2}} \varepsilon^{h}(\gamma) \phi(z ; \tau)
$$

Jacobi forms

Definition

For an integral lattice $\underline{L}=(L, \beta)$ with a symm. non-degen. bilinear form β, a Jacobi form of weight k, index \underline{L} and character ε^{h} of η^{h} is a holomorphic function $\phi(z ; \tau), z \in \mathbb{C} \otimes L, \tau \in \mathbb{H}$:

$$
\begin{aligned}
& \phi\left(\frac{z}{c \tau+d} ; \gamma \tau\right)=e\left(\frac{c \beta(z)}{c \tau+d}\right)(c \tau+d)^{k-\frac{h}{2}} \varepsilon^{h}(\gamma) \phi(z ; \tau) \\
& \phi(z+x \tau+y ; \tau)=e(\beta(x+y)-\tau \beta(x)-\beta(x, z)) \phi(z ; \tau)
\end{aligned}
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}), x, y \in L$

Jacobi forms

Definition

For an integral lattice $\underline{L}=(L, \beta)$ with a symm. non-degen. bilinear form β, a Jacobi form of weight k, index \underline{L} and character ε^{h} of η^{h} is a holomorphic function $\phi(z ; \tau), z \in \mathbb{C} \otimes L, \tau \in \mathbb{H}$:

$$
\begin{aligned}
& \phi\left(\frac{z}{c \tau+d} ; \gamma \tau\right)=e\left(\frac{c \beta(z)}{c \tau+d}\right)(c \tau+d)^{k-\frac{h}{2}} \varepsilon^{h}(\gamma) \phi(z ; \tau) \\
& \phi(z+x \tau+y ; \tau)=e(\beta(x+y)-\tau \beta(x)-\beta(x, z)) \phi(z ; \tau)
\end{aligned}
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), x, y \in L$ and has Fourier expansion:

$$
\phi(z ; \tau)=\sum_{n \in \frac{h}{24}+\mathbb{Z}} \sum_{\substack{r \in L^{\bullet} \\ n \geq \beta(r)}} c(n, r) e(\beta(r, z)) q^{n} .
$$

Eutactic stars

Definition

A eutactic star of rank N on a lattice \underline{L} is a family s of non-zero vectors $s_{j} \in L^{\#}(1 \leq j \leq N)$ such that

$$
x=\sum_{j=1}^{N} \beta\left(s_{j}, x\right) s_{j} \quad \forall x \in \mathbb{Q} \otimes L
$$

Eutactic stars

Definition

A eutactic star of rank N on a lattice \underline{L} is a family s of non-zero vectors $s_{j} \in L^{\#}(1 \leq j \leq N)$ such that

$$
x=\sum_{j=1}^{N} \beta\left(s_{j}, x\right) s_{j} \quad \forall x \in \mathbb{Q} \otimes L
$$

Definition

Let $G \subseteq O(\underline{L})$ with the property that for each $g \in G$ there exists a permutation σ of the indices $1 \leq j \leq N$ and signs $\varepsilon_{j} \in\{ \pm 1\}$ such that $g s_{j}=\varepsilon_{j} s_{\sigma(j)} \forall j$. Define the linear character sn: $G \rightarrow\{ \pm 1\}$ by

$$
\operatorname{sn}(g):=\prod_{j} \varepsilon_{j}
$$

Eutactic stars

- The shadow of L is

$$
L^{\bullet}:=\{r \in \mathbb{Q} \otimes L: \beta(x) \equiv \beta(r, x) \quad(\bmod \mathbb{Z}) \text { for all } x \in L\}
$$

Eutactic stars

- The shadow of L is

$$
L^{\bullet}:=\{r \in \mathbb{Q} \otimes L: \beta(x) \equiv \beta(r, x) \quad(\bmod \mathbb{Z}) \text { for all } x \in L\}
$$

- The kernel of the map $x \mapsto \beta(x) \in \operatorname{Hom}(L, \mathbb{Q} / \mathbb{Z})$ is denoted by $L_{\text {ev }}$.

Eutactic stars

- The shadow of L is

$$
L^{\bullet}:=\{r \in \mathbb{Q} \otimes L: \beta(x) \equiv \beta(r, x) \quad(\bmod \mathbb{Z}) \text { for all } x \in L\}
$$

- The kernel of the map $x \mapsto \beta(x) \in \operatorname{Hom}(L, \mathbb{Q} / \mathbb{Z})$ is denoted by $L_{\text {ev }}$.

Definition

A eutactic star is G-extremal on \underline{L} if there is exactly one G-orbit in $L^{\bullet} / L_{e v}$ whose elements have their stabilizers in the kernel of sn .

A product to sum theorem

Theorem (Gritsenko-Skoruppa-Zagier)

Let $\underline{L}=(L, \beta)$ be an integral lattice of rank n, let s be a G-extremal eutactic star of rank N on \underline{L}. Then there is a constant γ and a vector $w \in L^{\bullet}$ such that

$$
\eta(\tau)^{n-N} \prod_{j=1}^{N} \theta\left(\beta\left(s_{j}, z\right) ; \tau\right)=\gamma \sum_{x \in w+L_{e v}} q^{\beta(x)} \sum_{g \in G} \operatorname{sn}(g) e(\beta(g x, z))
$$

In particular, the product on the left defines an element of $J_{\frac{n}{2}, \underline{L}}\left(\varepsilon^{n+2 N}\right)$.

Root systems

Definition

A root system R with associated Euclidean space E_{R} with inner product (\cdot, \cdot) is a finite set of non-zero vectors (roots) that satisfy the following:

Root systems

Definition

A root system R with associated Euclidean space E_{R} with inner product (\cdot, \cdot) is a finite set of non-zero vectors (roots) that satisfy the following:
(1) The roots span E_{R}.

Root systems

Definition

A root system R with associated Euclidean space E_{R} with inner product (\cdot, \cdot) is a finite set of non-zero vectors (roots) that satisfy the following:
(1) The roots span E_{R}.
(2) The only scalar multiples of $r \in R$ in R are $\pm r$.

Root systems

Definition

A root system R with associated Euclidean space E_{R} with inner product (\cdot, \cdot) is a finite set of non-zero vectors (roots) that satisfy the following:
(1) The roots span E_{R}.
(2) The only scalar multiples of $r \in R$ in R are $\pm r$.
(3) For any two $r, v \in R$, we have $2 \frac{(r, v)}{(r, r)} \in \mathbb{Z}$.

Root systems

Definition

A root system R with associated Euclidean space E_{R} with inner product (\cdot, \cdot) is a finite set of non-zero vectors (roots) that satisfy the following:
(1) The roots span E_{R}.
(2) The only scalar multiples of $r \in R$ in R are $\pm r$.
(3) For any two $r, v \in R$, we have $2 \frac{(r, v)}{(r, r)} \in \mathbb{Z}$.
(9) For any two $r, v \in R$, we have $s_{r}(v):=v-2 \frac{(r, v)}{(r, r)} \in R$.

Root systems

- Let R be a root system of rank n and R^{+}be a system of positive roots of R.

Root systems

- Let R be a root system of rank n and R^{+}be a system of positive roots of R.
- Let F_{R} denote the subset of simple roots in R^{+}.

Root systems

- Let R be a root system of rank n and R^{+}be a system of positive roots of R.
- Let F_{R} denote the subset of simple roots in R^{+}.
- Let $h:=\frac{1}{n} \sum_{r \in R^{+}}(r, r)$.

Root systems

- Let R be a root system of rank n and R^{+}be a system of positive roots of R.
- Let F_{R} denote the subset of simple roots in R^{+}.
- Let $h:=\frac{1}{n} \sum_{r \in R^{+}}(r, r)$.
- Define the lattice

$$
W_{R}:=\left\{x \in E_{R}: \frac{(x, r)}{h} \in \mathbb{Z} \text { for all } r \in R\right\}
$$

and set $\underline{R}:=\left(W_{r}, \frac{(\cdot, \cdot)}{h}\right)$.

Root systems

- Let R be a root system of rank n and R^{+}be a system of positive roots of R.
- Let F_{R} denote the subset of simple roots in R^{+}.
- Let $h:=\frac{1}{n} \sum_{r \in R^{+}}(r, r)$.
- Define the lattice

$$
W_{R}:=\left\{x \in E_{R}: \frac{(x, r)}{h} \in \mathbb{Z} \text { for all } r \in R\right\}
$$

and set $\underline{R}:=\left(W_{r}, \frac{(\cdot, \cdot)}{h}\right)$.

- Let G_{R} be the Weyl group; the group generated by all of the s_{r} for $r \in R$.

Product to sum theorem for root systems

Theorem (Gritsenko-Skoruppa-Zagier)
Assume the previous notation. Then R^{+}is a eutactic star on \underline{R} and is extremal with respect to G_{R}.

Product to sum theorem for root systems

Theorem (Gritsenko-Skoruppa-Zagier)

Assume the previous notation. Then R^{+}is a eutactic star on \underline{R} and is extremal with respect to G_{R}.

Theorem

Let R be an irreducible root system with a choice of positive roots R^{+}, and let $w=\frac{1}{2} \sum_{r \in R^{+}} r$. Then we have

$$
\begin{aligned}
\theta_{R}(z ; \tau) & :=\eta(\tau)^{n-\left|R^{+}\right|} \prod_{r \in R^{+}} \theta\left(\frac{(r, z)}{h} ; \tau\right) \\
& =\sum_{x \in w+W_{R, e v}} q^{\frac{(x, x)}{2 h}} \sum_{g \in G_{R}} \operatorname{sn}(g) e\left(\frac{(g x, z)}{h}\right)
\end{aligned}
$$

for all $\tau \in \mathfrak{H}$ and $z \in \mathbb{C} \otimes W_{R} . \theta_{R}$ is in $J_{\frac{n}{2}, \underline{R}}\left(\epsilon^{n+2 N}\right)$.

Some pictures

Ranks, cranks, and new directions in partitions

Some pictures

Ranks, cranks, and new directions in partitions

Some pictures

B_{2}

A_{2}

Ranks, cranks, and new directions in partitions

Some pictures

A_{2}

4 [Wikimedia User:Mā̄sim]

Weight one theta blocks

- $J_{1, m}\left(\varepsilon^{h}\right)$ is spanned by specializations of ϕ_{R} for $h=4,6,8,10,14$.

Weight one theta blocks

- $J_{1, m}\left(\varepsilon^{h}\right)$ is spanned by specializations of ϕ_{R} for $h=4,6,8,10,14$.
- $J_{1, m}\left(\varepsilon^{2}\right)$ contains theta blocks but is not necessarily spanned by them.

Weight one theta blocks

- $J_{1, m}\left(\varepsilon^{h}\right)$ is spanned by specializations of ϕ_{R} for $h=4,6,8,10,14$.
- $J_{1, m}\left(\varepsilon^{2}\right)$ contains theta blocks but is not necessarily spanned by them.
- $J_{1, m}\left(\varepsilon^{h}\right)=0$ for all other $h(\bmod 24)$.

Weight one theta blocks

- $J_{1, m}\left(\varepsilon^{h}\right)$ is spanned by specializations of ϕ_{R} for $h=4,6,8,10,14$.
- $J_{1, m}\left(\varepsilon^{2}\right)$ contains theta blocks but is not necessarily spanned by them.
- $J_{1, m}\left(\varepsilon^{h}\right)=0$ for all other $h(\bmod 24)$.

h	R	$\phi_{R}(z ; \tau)$
2	$A_{1} \oplus A_{1}$	$\vartheta^{*}\left(z_{1}\right) \vartheta^{*}\left(z_{2}\right)$
4	$A_{1} \oplus A_{1}$	$\vartheta\left(z_{1}\right) \vartheta^{*}\left(z_{2}\right)$
6	$A_{1} \oplus A_{1}$	$\vartheta\left(z_{1}\right) \vartheta\left(z_{2}\right)$

8	A_{2}	$\eta^{-1} \vartheta\left(z_{1}\right) \vartheta\left(z_{2}\right) \vartheta\left(z_{1}+z_{2}\right)$
10	B_{2}	$\eta^{-2} \vartheta\left(z_{1}\right) \vartheta\left(z_{2}\right) \vartheta\left(z_{1}+z_{2}\right) \vartheta\left(z_{1}+2 z_{2}\right)$
14	G_{2}	$\eta^{-4} \vartheta\left(z_{1}\right) \vartheta\left(z_{2}\right) \vartheta\left(z_{1}+z_{2}\right) \vartheta\left(2 z_{1}+z_{2}\right) \vartheta\left(3 z_{1}+z_{2}\right) \vartheta\left(3 z_{1}+2 z_{2}\right)$

An example: $R=B_{2}$

The root system B_{2} has Euclidean space $E_{B_{2}}=\mathbb{R}^{2}$.

An example: $R=B_{2}$

The root system B_{2} has Euclidean space $E_{B_{2}}=\mathbb{R}^{2}$.
We can choose

$$
\begin{aligned}
B_{2}^{+} & =\{(1,-1),(0,1),(1,0),(1,1)\} \\
& =\left\{r_{1}, r_{2}, r_{3}=r_{1}+r_{2}, r_{4}=r_{1}+2 r_{2}\right\}, \\
F_{B_{2}} & =\left\{r_{1}, r_{2}\right\} .
\end{aligned}
$$

An example: $R=B_{2}$

The root system B_{2} has Euclidean space $E_{B_{2}}=\mathbb{R}^{2}$.
We can choose

$$
\begin{aligned}
B_{2}^{+} & =\{(1,-1),(0,1),(1,0),(1,1)\} \\
& =\left\{r_{1}, r_{2}, r_{3}=r_{1}+r_{2}, r_{4}=r_{1}+2 r_{2}\right\}, \\
F_{B_{2}} & =\left\{r_{1}, r_{2}\right\} .
\end{aligned}
$$

A calculation shows $G_{B_{2}}=\left\{ \pm l d, \pm s_{r_{1}} s_{r_{2}}, \pm s_{r_{1}}, \pm s_{r_{2}}\right\} \cong D_{4}$ with

$$
\operatorname{sn}(\pm I d)=\operatorname{sn}\left(\pm s_{r_{1}} s_{r_{2}}\right)=1, \quad \operatorname{sn}\left(\pm s_{r_{1}}\right)=\operatorname{sn}\left(\pm s_{r_{2}}\right)=-1 .
$$

An example: $R=B_{2}$

The root system B_{2} has Euclidean space $E_{B_{2}}=\mathbb{R}^{2}$.
We can choose

$$
\begin{aligned}
B_{2}^{+} & =\{(1,-1),(0,1),(1,0),(1,1)\} \\
& =\left\{r_{1}, r_{2}, r_{3}=r_{1}+r_{2}, r_{4}=r_{1}+2 r_{2}\right\}, \\
F_{B_{2}} & =\left\{r_{1}, r_{2}\right\} .
\end{aligned}
$$

A calculation shows $G_{B_{2}}=\left\{ \pm / d, \pm s_{r_{1}} s_{r_{2}}, \pm s_{r_{1}}, \pm s_{r_{2}}\right\} \cong D_{4}$ with

$$
\operatorname{sn}(\pm l d)=\operatorname{sn}\left(\pm s_{r_{1}} s_{r_{2}}\right)=1, \quad \operatorname{sn}\left(\pm s_{r_{1}}\right)=\operatorname{sn}\left(\pm s_{r_{2}}\right)=-1 .
$$

We find $h=3$ and $w=\left(\frac{3}{2}, \frac{1}{2}\right)$.

An example: $R=B_{2}$

$$
\begin{aligned}
W_{B_{2}} & =\left\{x \in \mathbb{R}^{2}: \frac{(x, r)}{3} \in \mathbb{Z} \forall r \in B_{2}\right\} \\
& =\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1} \equiv x_{2} \equiv 0(\bmod 3)\right\}
\end{aligned}
$$

An example: $R=B_{2}$

$$
\begin{aligned}
W_{B_{2}} & =\left\{x \in \mathbb{R}^{2}: \frac{(x, r)}{3} \in \mathbb{Z} \forall r \in B_{2}\right\} \\
& =\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1} \equiv x_{2} \equiv 0 \quad(\bmod 3)\right\} \\
W_{B_{2}, e v}= & \left\{x \in W_{B_{2}}: \frac{(x, x)}{6} \in \mathbb{Z}\right\} \\
= & \left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1} \equiv x_{2} \equiv 0 \quad(\bmod 3), x_{1} \equiv x_{2}(\bmod 2)\right\} .
\end{aligned}
$$

An example: $R=B_{2}$

$$
\begin{aligned}
& W_{B_{2}}=\left\{x \in \mathbb{R}^{2}: \frac{(x, r)}{3} \in \mathbb{Z} \forall r \in B_{2}\right\} \\
&=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1} \equiv x_{2} \equiv 0 \quad(\bmod 3)\right\} \\
& W_{B_{2}, e v}=\{x \in\left.W_{B_{2}}: \frac{(x, x)}{6} \in \mathbb{Z}\right\} \\
&=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1} \equiv x_{2} \equiv 0 \quad(\bmod 3), x_{1} \equiv x_{2} \quad(\bmod 2)\right\} . \\
& x=\left(x_{1}, x_{2}\right)= x_{1} r_{1}+\left(x_{1}+x_{2}\right) r_{2}, \text { compute action on simple roots: } \\
& \pm l d(x)= \pm\left[x_{1} r_{1}+\left(x_{1}+x_{2}\right) r_{2}\right], \\
& \pm s_{r_{1}} s_{r_{2}}(x)= \pm\left[-x_{2} r_{1}+\left(x_{1}-x_{2}\right) r_{2}\right], \\
& s_{r_{1}}(x)= \pm\left[x_{2} r_{1}+\left(x_{1}+x_{2}\right) r_{2}\right], \\
& \pm s_{r_{2}}(x)= \pm\left[x_{1} r_{1}+\left(x_{1}-x_{2}\right) r_{2}\right] .
\end{aligned}
$$

An example: $R=B_{2}$

We make the changes of variable $z_{1}=\frac{\left(r_{1}, z\right)}{3}$ and $z_{2}=\frac{\left(r_{2}, z\right)}{3}$ to obtain

$$
\begin{aligned}
& \theta_{B_{2}}(z ; \tau)=\eta(\tau)^{-2} \theta\left(z_{1} ; \tau\right) \theta\left(z_{2} ; \tau\right) \theta\left(z_{1}+z_{2} ; \tau\right) \theta\left(z_{1}+2 z_{2} ; \tau\right) \\
& =\sum_{\substack{x \in\left(\frac{3}{2}, \frac{1}{2}\right)+\mathbb{Z}^{2} \\
x_{1}=x_{2}=0 \\
x_{1}=x_{2} \\
x_{1}(\bmod 3) \\
(\bmod 2)}} q^{\frac{x_{1}^{2}+x_{2}^{2}}{6}} \\
& \times\left[\zeta_{1}^{x_{1}} \zeta_{2}^{x_{1}+x_{2}}+\zeta_{1}^{-x_{1}} \zeta_{2}^{-x_{1}-x_{2}}+\zeta_{1}^{-x_{2}} \zeta_{2}^{x_{1}-x_{2}}+\zeta_{1}^{x_{2}} \zeta_{2}^{-x_{1}+x_{2}}\right. \\
& \left.-\zeta_{1}^{x_{2}} \zeta_{2}^{x_{1}+x_{2}}-\zeta_{1}^{-x_{2}} \zeta_{2}^{-x_{1}-x_{2}}-\zeta_{1}^{x_{1}} \zeta_{2}^{x_{1}-x_{2}}-\zeta_{1}^{-x_{1}} \zeta_{2}^{-x_{1}+x_{2}}\right] .
\end{aligned}
$$

An application to colored partitions

Let

$$
\mathcal{C}_{k}\left(a_{1} z, a_{2} z, \ldots, a_{\frac{k+\delta_{\mathrm{odd}}(k)}{2}}^{2} ; \tau\right):=\mathcal{C}(0 ; \tau)^{\frac{k-\delta_{\mathrm{odd}}(k)}{2}} \prod_{i=1}^{\frac{k+\delta_{\mathrm{odd}}(k)}{2}} \mathcal{C}\left(a_{i} z ; \tau\right)
$$

where $\mathcal{C}(z ; \tau):=\prod_{n \geq 1} \frac{1-q^{n}}{\left(1-\zeta q^{n}\right)\left(1-\zeta^{-1} q^{n}\right)}$

An application to colored partitions

Let

$$
\mathcal{C}_{k}\left(a_{1} z, a_{2} z, \ldots, a_{\frac{k+\delta_{\text {odd }}(k)}{2}} z ; \tau\right):=\mathcal{C}(0 ; \tau)^{\frac{k-\delta_{\text {odd }}(k)}{2}} \prod_{i=1}^{\frac{k+\delta_{\text {odd }}(k)}{2}} \mathcal{C}\left(a_{i} z ; \tau\right),
$$

where $\mathcal{C}(z ; \tau):=\prod_{n \geq 1} \frac{1-q^{n}}{\left(1-\zeta q^{n}\right)\left(1-\zeta^{-1} q^{n}\right)}$ and define

$$
\begin{aligned}
\mathcal{C}_{k}(z ; \tau) & :=\mathcal{C}_{k}\left(k z,(k-2) z, \ldots,\left(2-\delta_{\text {odd }}(k)\right) z ; \tau\right) \\
& =\prod_{n \geq 1} \frac{1-\delta_{\text {odd }}(k) q^{n}}{\left(1-\zeta^{ \pm k} q^{n}\right)\left(1-\zeta^{ \pm(k-2)} q^{n}\right) \cdots\left(1-\zeta^{ \pm\left(2-\delta_{\text {odd }}(k)\right)} q^{n}\right)} .
\end{aligned}
$$

An application to colored partitions

Let

$$
\mathcal{C}_{k}\left(a_{1} z, a_{2} z, \ldots, a_{\frac{k+\delta_{\text {odd }}(k)}{2}} z ; \tau\right):=\mathcal{C}(0 ; \tau)^{\frac{k-\delta_{\text {odd }}(k)}{2}} \prod_{i=1}^{\frac{k+\delta_{\text {odd }}(k)}{2}} \mathcal{C}\left(a_{i} z ; \tau\right),
$$

where $\mathcal{C}(z ; \tau):=\prod_{n \geq 1} \frac{1-q^{n}}{\left(1-\zeta q^{n}\right)\left(1-\zeta^{-1} q^{n}\right)}$ and define

$$
\begin{aligned}
\mathcal{C}_{k}(z ; \tau) & :=\mathcal{C}_{k}\left(k z,(k-2) z, \ldots,\left(2-\delta_{\text {odd }}(k)\right) z ; \tau\right) \\
& =\prod_{n \geq 1} \frac{1-\delta_{\text {odd }}(k) q^{n}}{\left(1-\zeta^{ \pm k} q^{n}\right)\left(1-\zeta^{ \pm(k-2)} q^{n}\right) \cdots\left(1-\zeta^{ \pm\left(2-\delta_{\text {odd }}(k)\right)} q^{n}\right)} .
\end{aligned}
$$

Notice that

$$
C_{k}(0 ; \tau)=P_{k}(\tau):=\sum_{n \geq 0} p_{k}(n) q^{n}=\prod_{n \geq 1} \frac{1}{\left(1-q^{n}\right)^{k}}
$$

An example of the above theorem

Let $\Phi_{\ell}(\zeta)$ denote the ℓ-th cyclotomic polynomial.
Theorem (R.-Tripp-W)
Suppose $k \equiv-10(\bmod \ell)$ for a prime $\ell \equiv 3(\bmod 4)$. Then for $n \geq 0$ we have the divisibility relation

$$
\Phi_{\ell}(\zeta) \left\lvert\,\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right] \mathcal{C}_{k}(z ; \tau)\right.
$$

An example of the above theorem

Let $\Phi_{\ell}(\zeta)$ denote the ℓ-th cyclotomic polynomial.
Theorem (R.-Tripp-W)
Suppose $k \equiv-10(\bmod \ell)$ for a prime $\ell \equiv 3(\bmod 4)$. Then for $n \geq 0$ we have the divisibility relation

$$
\Phi_{\ell}(\zeta) \left\lvert\,\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right] \mathcal{C}_{k}(z ; \tau)\right.
$$

Corollary

Suppose $k \equiv-10(\bmod \ell)$ for a prime $\ell \equiv 3(\bmod 4)$. Then we have the Ramanujan-type congruence

$$
p_{k}\left(\ell n+5 \frac{\ell^{2}-1}{12}\right) \equiv 0 \quad(\bmod \ell) .
$$

Proof

- The discussion of $\theta_{B_{2}}$ shows that

$$
\prod\left(1-q^{n}\right)^{2}\left(1-\zeta_{1}^{ \pm 1} q^{n}\right)\left(1-\zeta_{2}^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}\right)^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}^{2}\right)^{ \pm 1} q^{n}\right)
$$

$$
n \geq 1
$$

vanishes at the coefficient $\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right]$ when ζ_{1} and ζ_{2} are set to ℓ-th roots of unity.

Proof

- The discussion of $\theta_{B_{2}}$ shows that
$\prod\left(1-q^{n}\right)^{2}\left(1-\zeta_{1}^{ \pm 1} q^{n}\right)\left(1-\zeta_{2}^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}\right)^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}^{2}\right)^{ \pm 1} q^{n}\right)$ $n \geq 1$
vanishes at the coefficient $\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right]$ when ζ_{1} and ζ_{2} are set to ℓ-th roots of unity.
- Set $z_{1}=4 z$ and $z_{2}=2 z$ then multiply the numerator and denominator of $C_{k}(z ; \tau)$ by the above product.

Proof

- The discussion of $\theta_{B_{2}}$ shows that
$\prod\left(1-q^{n}\right)^{2}\left(1-\zeta_{1}^{ \pm 1} q^{n}\right)\left(1-\zeta_{2}^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}\right)^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}^{2}\right)^{ \pm 1} q^{n}\right)$ $n \geq 1$
vanishes at the coefficient $\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right]$ when ζ_{1} and ζ_{2} are set to ℓ-th roots of unity.
- Set $z_{1}=4 z$ and $z_{2}=2 z$ then multiply the numerator and denominator of $C_{k}(z ; \tau)$ by the above product.
- The denominator factors into terms of the form $1-q^{\ell n}+\Phi_{\ell}(\zeta) \cdot f(z ; \tau)$ for some function f.

Proof

- The discussion of $\theta_{B_{2}}$ shows that
$\prod\left(1-q^{n}\right)^{2}\left(1-\zeta_{1}^{ \pm 1} q^{n}\right)\left(1-\zeta_{2}^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}\right)^{ \pm 1} q^{n}\right)\left(1-\left(\zeta_{1} \zeta_{2}^{2}\right)^{ \pm 1} q^{n}\right)$ $n \geq 1$
vanishes at the coefficient $\left[q^{\ell n+5 \frac{\ell^{2}-1}{12}}\right]$ when ζ_{1} and ζ_{2} are set to ℓ-th roots of unity.
- Set $z_{1}=4 z$ and $z_{2}=2 z$ then multiply the numerator and denominator of $C_{k}(z ; \tau)$ by the above product.
- The denominator factors into terms of the form $1-q^{\ell n}+\Phi_{\ell}(\zeta) \cdot f(z ; \tau)$ for some function f.
- The numerator is the above product which we have shown is divisible by $\Phi_{\ell}(\zeta)$ on the q-exponents we're concerned with.

Stanton-type Conjectures for k-colored partitions

Theorem (Bringmann-Gomez-R.-Tripp, 2021)
There are families of Stanton-type conjectures that appear to hold for these families.

Numerical Examples

Crank	Unimodal?
$\mathcal{C}_{3}(2,1 ; z ; \tau)$	$\forall n>7$
$\mathcal{C}_{3}(3,1 ; z ; \tau)$	no
$\mathcal{C}_{3}(3,2 ; z ; \tau)$	$\forall n>6$
(A)	

(A) $k=3$

Crank	Unimodal?
$\mathcal{C}_{5}(3,2,1 ; z ; \tau)$	$\forall n>9$
$\mathcal{C}_{5}(4,2,1 ; z ; \tau)$	no
$\mathcal{C}_{5}(5,2,1 ; z ; \tau)$	no
$\mathcal{C}_{5}(4,3,1 ; z ; \tau)$	$\forall n>11$
$\mathcal{C}_{5}(5,3,1 ; z ; \tau)$	no
$\mathcal{C}_{5}(5,4,1 ; z ; \tau)$	$\forall n>9$
$\mathcal{C}_{5}(4,3,2 ; z ; \tau)$	$\forall n>10$
$\mathcal{C}_{5}(5,3,2 ; z ; \tau)$	no
$\mathcal{C}_{5}(5,4,2 ; z ; \tau)$	$\forall n>13$
$\mathcal{C}_{5}(5,4,3 ; z ; \tau)$	$\forall n>13$

(c) $k=5$

Crank	Unimodal?
$\mathcal{C}_{4}(2,1 ; z ; \tau)$	$\forall n>1$
$\mathcal{C}_{4}(3,1 ; z ; \tau)$	no
$\mathcal{C}_{4}(4,1 ; z ; \tau)$	no
$\mathcal{C}_{4}(3,2 ; z ; \tau)$	$\forall n>1$
$\mathcal{C}_{4}(4,2 ; z ; \tau)$	no
$\mathcal{C}_{4}(4,3 ; z ; \tau)$	$\forall n>23$

$(\mathrm{B}) k=4$	
Crank	Unimodal?
$\mathcal{C}_{6}(3,2,1 ; z ; \tau)$	$\forall n>1$
$\mathcal{C}_{6}(4,2,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(5,2,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,2,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(4,3,1 ; z ; \tau)$	$\forall n>5$
$\mathcal{C}_{6}(5,3,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,3,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(5,4,1 ; z ; \tau)$	$\forall n>11$
$\mathcal{C}_{6}(6,4,1 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,5,1 ; z ; \tau)$	$\forall n>21$
$\mathcal{C}_{6}(4,3,2 ; z ; \tau)$	$\forall n>14$
$\mathcal{C}_{6}(5,3,2 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,3,2 ; z ; \tau)$	no
$\mathcal{C}_{6}(5,4,2 ; z ; \tau)$	$\forall n>19$
$\mathcal{C}_{6}(6,4,2 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,5,2 ; z ; \tau)$	$\forall n>20$
$\mathcal{C}_{6}(5,4,3 ; z ; \tau)$	$\forall n>7$
$\mathcal{C}_{6}(6,4,3 ; z ; \tau)$	no
$\mathcal{C}_{6}(6,5,3 ; z ; \tau)$	$\forall n>32$
$\mathcal{C}_{6}(6,5,4 ; z ; \tau)$	$\forall n>19$

(D) $k=6$

Table 1. Cranks for the given value of k

Conjecture 4.1. Let $\mathcal{D}(z ; \tau):=\mathcal{C}_{k}\left(a_{1}, a_{2}, \ldots, a_{\frac{k+\delta_{2+k}}{2}} ; z ; \tau\right)$ for some $a_{1}>a_{2}>\cdots>$ $a_{\frac{k+\delta_{24 k}}{2}}>0$ and $k \geq 3$. Then $\mathcal{D}(z ; \tau)$ is eventually unimodal if and only if $a_{1}-a_{2}=1$.

Thank you!!!

