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Integer partitions

Definition

An integer partition of n is a sequence of positive integers
λ1 ≥ λ2 ≥ . . . ≥ λk such that

λ1 + . . .+ λk = n.

We denote the number of partitions of n by p(n).

Example

The partitions of 4 are:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Thus, p(4) = 5. In particular, 5|p(4).
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Amuse-bouche

Example

Two partitions of 13, in both math and English, are:

13 = Eleven Plus Two = Twelve Plus One.
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Partition applications

Partitions show up throughout mathematics and physics.

Studying their growth rate led to the Circle Method, which
is a major tool in analytic number theory.

The Circle Method was used by Helfgott to prove the weak
Goldbach Conjecture: All odd numbers greater than 5 are a
sum of three primes.

The growth rate of p(n) was used by Bohr and Kalckar to
calculate energy levels in heavy nuclei. . . many other
applications in physics.

Partitions are in bijection with irreducible representations of
the symmetric group Sn; many properties of the
representations “encoded” in partition structure.

Partitions also show up in. . . algebraic geometry (counting
problems), modeling cyrstals and Bose-Eisenstein condensates,
Cardy formulas in conformal field theory.
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Partition properties

Partitions also have many beautiful properties.

They have analytic properties.

The Hardy-Ramanujan asymptotic for p(n) is

p(n) ∼ 1

4n
√

3
e
π
√

2n
3 .

[Credit:Jon Perry (June 2011)]
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Even more precise

This can be extended to an exact formula of Rademacher:

p(n) =
2π

(24n − 1)
3
4

∑
k≥1

Ak(n)

k
I 3
2

(
π
√

24n − 1

6k

)
.

Ak(n) are “wild” exponential sums, I 3
2
(·) is a Bessel function.

[Credit: Kowalski’s Blog]

Later, we’ll see explicit inequalities, like log-concavity:

p(n)2 ≥ p(n − 1)p(n + 1) (n > 25).
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Arithmetic properties

Partitions also satisfy beautiful congruences.

Theorem (Ramanujan’s Congruences 1919; Hardy-Ramanujan)

p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Theorem (Ahlgren-Boylan (2003))

5, 7, and 11 are the only primes with “nice” congruences like this.

Congruences exist for other primes, but they look like this:

p(1074 · 31k + 30064597) ≡ 0 (mod 31) Ono, 2000.

Originally only q-series (analytic) proofs (gen. functions).
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A combinatorial realization?

Definition (Dyson 1944)

rank(λ) = largest part λ1 −# of parts k.

This is a measure of “failure of symmetry.” Namely, for
reflecting Young diagram’s across the line y = −x .

λ=5+4+3+1
( rank =1) → λ′=4+3+3+2+1

( rank =−1)

N(m, n) := #{ptns of n with rank m},
N(m, q; n) := #{ptns of n with rank ≡ m (mod q)}.
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Dyson’s Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and
Swinnerton-Dyer in 1954)

We have

N(0, 5; 5n + 4) = N(1, 5; 5n + 4) = . . . = N(4, 5; 5n + 4).

Similarly for ranks mod 7 for partitions of 7n + 5.

This “explains” Ramanujan’s congruences mod 5 and 7 using
a combinatorial object.
The generating function is (q := e2πiτ , τ ∈ H, ζ := e2πiz , z ∈
C, (a; q)n = (a)n :=

∏n−1
j=0 (1− aqj),):

R(ζ; q) :=
∑
m∈Z
n≥0

N(m, n)ζmqn =
∑
n≥0

qn
2

(ζq)n(ζ−1q)n
.
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Comments on ranks

For those who have seen partitions before:

R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.

This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

Comments on ranks

For those who have seen partitions before: R(ζ; q) must
specialize to the gen. function for p(n) at ζ = 1.This gives
the non-obvious

∏
=
∑

identity

(q)−1∞ =
∑
n≥0

qn
2

(q)2n
.

These
∏

=
∑

identities are usually tied to Lie theory, and
this is a hint of structure to come. . . .

For z any other torsion point z ∈ Qτ + Q, this gives a key
example of a “mock modular form.”

This helped spur the growth of the field of mock modular
forms/harmonic Maass forms and led to many new
applications in analytic and arithmetic properties of partitions.



Recent problems in partitions and other combinatorial functions

What about mod 11?

Dyson: there may be a “crank function” explaining all of
Ramanujan’s congruences.

Definition (Andrews-Garvan, 1988)

crank(λ) :=

{
largest part of λ if no 1’s in λ,

(# parts larger than # of 1’s)− (# of 1’s) else.

Theorem (Andrews-Garvan)

Cranks “explain” Ramanujan’s congruences mod 5, 7, and 11.
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Remarks on cranks

Generating Function

We have

C (z ; τ) :=
∑

M(m, n)ζmqn = q
1
24 (ζ−

1
2 − ζ

1
2 )
η2(τ)

ϑ(z ; τ)
,

where

η(τ) := q
1
24 (q)∞, ϑ(z ; τ) :=

∑
n∈Z+ 1

2

eπin
2τ+ n

2
(z+ 1

2
).

The η-function is a weight 1/2 “modular form.” The
ϑ-function is a “Jacobi form.”

Sanity check: must have C (1; τ) =
∑

p(n)qn = q
1
24 η−1(τ).

This works out since ϑ′(0; τ) = −2πη3(τ).
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Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ` on a progression `n + β is
equivalent to

Φ`(ζ)|[q`n+β]C (z ; τ).

Here, Φ` is the `-th cyclotomic polynomial, and divisibility is as
Laurent polynomials.

Taking coefficients of powers of ζ, say for things like 1/ϑm is
common in Jacobi forms (has applications to Kac-Wakimoto
characters of Lie superalgebras).

Coefficients of positive powers of ϑ also has applications, e.g.,
my recent work with Jiang and Woodbury giving formulas for
generalized Frobenius partitions and new combinatorial
structure of other coefficients via Motzkin path counting.

Looking at the coefficients of powers of q is uncommon.
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Recent problems in partitions and other combinatorial functions

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can
we find a direct bijection?

Stanton first notes the divisibility Φ`(ζ)|[q`n+β]R/C (z ; τ).

If the quotient had positive coefficients, he suggested they
may count something important.

This doesn’t work. This is related to unimodality, which fails
as per this table of M(m, n) (from OEIS)
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Stanton’s Conjecture

Definition (Stanton)

The modified rank and crank are:

rank∗`,n(ζ) := rank`n+β + ζ`n+β−2 − ζ`n+β−1 + ζ2−`n−β − ζ1−`n−β,

crank∗`,n(ζ) := crank`n+β(ζ) + ζ`n+β−`− ζ`n+β + ζ`−`n−β− ζ−`n−β,

where β := `− `2−1
24 .

Conjecture (Stanton)

All of the following are Laurent polynomials with positive
coefficients:

rank∗5,n(ζ)

Φ5(ζ)
,

rank∗7,n(ζ)

Φ7(ζ)
,

crank∗5,n(ζ)

Φ5(ζ)
,

crank∗7,n(ζ)

Φ7(ζ)
,

crank∗11,n(ζ)

Φ11(ζ)
.
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Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)

The crank part of Stanton’s Conjecture is true.

It turns out that this relates to inequalities of crank
numbers. . .

more on such inequalities later.
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Natural questions

Question

What do the positive coefficients mean?

Lie theory interpretation?

Question

What about ranks?

Forthcoming work by Bringmann, Gomez, Males, R.,

Bivariate distributions of ranks and cranks in ranges go back
to a physics-inspired conjecture of Dyson; state of the art due
to Bringmann-Dousse.

Question

Is there a more general phenomenon?
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A test case

Definition

The k-colored partitions are defined via generating functions as∑
n≥0

pk(n)qn =: (q)−k∞ .

There are various known Ramanujan-like congruences:
1 When k ≡ 0 (mod `):  Freshmen’s Dream/“work mod `.”
2 When k ≡ −1 (mod `):  Pentagonal Number Theorem.
3 When k ≡ −3 (mod `):  Jacobi Triple Product.
4 When k ≡ −4,−6,−8,−10,−14,−26 (mod `):  Boylan

found these using CM modular forms.

Question

Are there combinatorial interpretations for these congruences?
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Previous work

1 k ≡ 2 (mod `):  Hammond-Leiws, Andrews, Garvan.

2 k ≡ −2,−3 (mod `):  Garvan.

3 Else:  : None.

Remark

The cases k =≡ −4,−6,−8,−10,−14 (mod `) can be seen as
coming from Macdonald identities. The case of 26 is still a
mystery (old question of Dyson, Serre, et al on η26.
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A tool for “discovering” crank functions

Definition

Let k be odd (we’ll skip the even k).

For any vector a ∈ N
k+1
2 ,

define the product of crank functions which specialize to η−k when
ζ = 1:

Ck(a1, . . . , a k+1
2

) := C (0; τ)
k−1
2

k+1
2∏

j=1

C (aiz ; τ).

Theorem (Tripp-R.-Wagner 2020)

There is an infinite family of crank functions Ck(z ; τ)which explain
“most” congruences of colored partitions.
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Examples

Sample excluded case: There is an odd prime p ≡ 2 (mod 3)
with p|(k + 14), ` ≡ 2 (mod 3), and `|(k + 8).

The definition of the vectors is given for odd k by:

Ck(z ; τ) :=

{
Ck(k, (k − 2), 1 . . . ; τ) 6 ∃` = 3r + 2|(k + 14),

Ck(k + 2, k − 2, . . . , 1; τ), otherwise.

Idea: Use new theory of Gritsenko-Skoruppa-Zagier’s theta
blocks to give convenient constructions using Lie-theoretic
formulas that make it easier to “discover” such functions in
large families.
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Questions

1 Can this be done for higher prime powers?

2 What about other combinatorial functions?

3 Stanton-type conjectures?

Theorem (Bringmann-Gomez-R.-Tripp, 2021)

There are families of Stanton-type conjectures that appear to hold
for these families.
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Powers of the eta function

Nekrasov-Okounkov formula (P is the set of partitions; |λ| is
the number partitioned)

∑
λ∈P

q|λ|
∏

h∈H(λ)

(1− a

h2
) = q

1−α
24 ηa−1(τ).

H(λ) are the “hook lengths.”

First studied in the context of supersymmetric gauge theory.
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Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)

The partition function is eventually log-concave:

p(n)2 ≥ p(n − 1)p(n + 1), (n > 25).

An infinite family of generalizations of this was proven by
Griffin-Ono-R.-Zagier, with analogous results which gave new
evidence for the Riemann Hypothesis.

Another multiplicative inequality was given by
Bessenrodt-Ono:

p(a)p(b) ≥ p(a + b), (a, b ≥ 2 a + b > 8).
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Conjectures for arbitrary eta function powers

Conjecture (Chern-Fu-Tang)

For n, ` ∈ N, k ∈ N≥2, n > `, (k , n, `) 6= (2, 6, 4), we have

pk(n − 1)pk(`+ 1) ≥ pk(n)pk(`).

Conjecture (Heim-Neuhauser)

The same holds for any k ∈ R≥2.
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Final result

Theorem (Bringmann-Kane-R.-Tripp)

The conjecture of Chern-Fu-Tang is true.

The proof uses exact formulas for pk(n) due to
Iskander-Jain-Talvola. Then explicit error bounds and
estimations, plus a big computer check of finitely many cases.
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Thank you!!!


