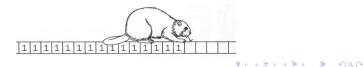
Recent problems in partitions and other combinatorial functions

Larry Rolen

Vanderbilt University

October 18, 2021 Oregon State University Math Colloquium [Credit: Math∩Programming Blog]



Partitions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$ such that

$$\lambda_1+\ldots+\lambda_k=n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We denote the number of partitions of n by p(n).

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

<ロト <回ト < 回ト < 回ト

э

We denote the number of partitions of n by p(n).

Example

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

$$4, 3+1$$

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

$$4, 3+1, 2+2,$$

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

$$4, \quad 3+1, \quad 2+2, \quad 2+1+1, \\$$

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

The partitions of 4 are:

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.$

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

The partitions of 4 are:

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.$

Thus, p(4) = 5.

Definition

An integer partition of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ such that

 $\lambda_1 + \ldots + \lambda_k = n.$

We denote the number of partitions of n by p(n).

Example

The partitions of 4 are:

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.$

Thus, p(4) = 5. In particular, 5|p(4).

Amuse-bouche

Example

Two partitions of 13, in both math and English, are:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Amuse-bouche

Example

Two partitions of 13, in both math and English, are:

13 = Eleven Plus Two = Twelve Plus One.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Partitions show up throughout mathematics and physics.

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture:

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group *S_n*;

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group *S_n*; many properties of the representations "encoded" in partition structure.

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group *S_n*; many properties of the representations "encoded" in partition structure.
- Partitions also show up in...

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group *S_n*; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems),

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_n ; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems), modeling cyrstals and Bose-Eisenstein condensates,

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the **Circle Method**, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of p(n) was used by Bohr and Kalckar to calculate energy levels in heavy nuclei...many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group *S_n*; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems), modeling cyrstals and Bose-Eisenstein condensates, Cardy formulas in conformal field theory.

• Partitions also have many beautiful properties.

• Partitions also have many beautiful properties.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

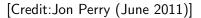
• They have analytic properties.

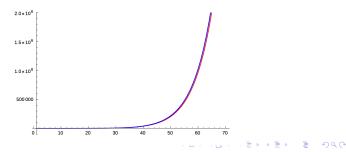
- Partitions also have many beautiful properties.
- They have analytic properties.
- The Hardy-Ramanujan asymptotic for p(n) is

$$p(n)\sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}.$$

- Partitions also have many beautiful properties.
- They have analytic properties.
- The Hardy-Ramanujan asymptotic for p(n) is

$$p(n)\sim rac{1}{4n\sqrt{3}}e^{\pi\sqrt{rac{2n}{3}}}.$$





• This can be extended to an exact formula of Rademacher:

$$p(n) = \frac{2\pi}{(24n-1)^{\frac{3}{4}}} \sum_{k \ge 1} \frac{A_k(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• This can be extended to an exact formula of Rademacher:

$$p(n) = \frac{2\pi}{(24n-1)^{\frac{3}{4}}} \sum_{k \ge 1} \frac{A_k(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right)$$

• $A_k(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• This can be extended to an exact formula of Rademacher:

$$p(n) = \frac{2\pi}{(24n-1)^{\frac{3}{4}}} \sum_{k \ge 1} \frac{A_k(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right).$$

• $A_k(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.

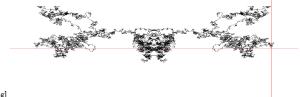
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

[Credit: Kowalski's Blog]

• This can be extended to an exact formula of Rademacher:

$$p(n) = \frac{2\pi}{(24n-1)^{\frac{3}{4}}} \sum_{k \ge 1} \frac{A_k(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right).$$

• $A_k(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.



[Credit: Kowalski's Blog]

Later, we'll see explicit inequalities, like log-concavity:

• This can be extended to an exact formula of Rademacher:

$$p(n) = \frac{2\pi}{(24n-1)^{\frac{3}{4}}} \sum_{k \ge 1} \frac{A_k(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi\sqrt{24n-1}}{6k}\right).$$

• $A_k(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.

[Credit: Kowalski's Blog]

Later, we'll see explicit inequalities, like log-concavity:

$$p(n)^2 \ge p(n-1)p(n+1)$$
 (n > 25).

Arithmetic properties

• Partitions also satisfy beautiful **congruences**.

Arithmetic properties

• Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan) $p(5n+4) \equiv 0 \pmod{5}, \quad p(7n+5) \equiv 0 \pmod{7},$ $p(11n+6) \equiv 0 \pmod{11}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Arithmetic properties

• Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

 $p(5n+4) \equiv 0 \pmod{5}, \qquad p(7n+5) \equiv 0 \pmod{7},$ $p(11n+6) \equiv 0 \pmod{11}.$

Theorem (Ahlgren-Boylan (2003))

5, 7, and 11 are the only primes with "nice" congruences like this.

Arithmetic properties

• Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$p(5n+4) \equiv 0 \pmod{5}, \qquad p(7n+5) \equiv 0 \pmod{7},$$

 $p(11n+6) \equiv 0 \pmod{11}.$

Theorem (Ahlgren-Boylan (2003))

5, 7, and 11 are the only primes with "nice" congruences like this.

• Congruences exist for other primes, but they look like this:

 $p(107^4 \cdot 31k + 30064597) \equiv 0 \pmod{31}$ Ono, 2000.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Arithmetic properties

• Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$p(5n+4) \equiv 0 \pmod{5}, \qquad p(7n+5) \equiv 0 \pmod{7},$$

 $p(11n+6) \equiv 0 \pmod{11}.$

Theorem (Ahlgren-Boylan (2003))

5, 7, and 11 are the only primes with "nice" congruences like this.

• Congruences exist for other primes, but they look like this:

 $p(107^4 \cdot 31k + 30064597) \equiv 0 \pmod{31}$ Ono, 2000.

(日) (日) (日) (日) (日) (日) (日) (日)

• Originally only *q*-series (analytic) proofs (gen. functions).

Definition (Dyson 1944)

 $\operatorname{rank}(\lambda) = \text{ largest part } \lambda_1 - \# \text{ of parts } k.$

Definition (Dyson 1944)

 $\operatorname{rank}(\lambda) = \text{ largest part } \lambda_1 - \# \text{ of parts } k.$

• This is a measure of "failure of symmetry."

Definition (Dyson 1944)

 $\operatorname{rank}(\lambda) = \text{ largest part } \lambda_1 - \# \text{ of parts } k.$

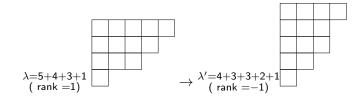
• This is a measure of "failure of symmetry." Namely, for reflecting **Young diagram's** across the line y = -x.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Definition (Dyson 1944)

 $\operatorname{rank}(\lambda) = \text{ largest part } \lambda_1 - \# \text{ of parts } k.$

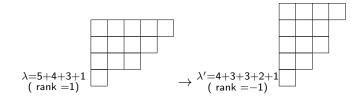
• This is a measure of "failure of symmetry." Namely, for reflecting **Young diagram's** across the line y = -x.



Definition (Dyson 1944)

 $\operatorname{rank}(\lambda) = \text{ largest part } \lambda_1 - \# \text{ of parts } k.$

• This is a measure of "failure of symmetry." Namely, for reflecting **Young diagram's** across the line y = -x.



• $N(m, n) := \# \{ \text{ptns of } n \text{ with rank } m \},$ $N(m, q; n) := \# \{ \text{ptns of } n \text{ with rank } \equiv m \pmod{q} \}.$

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$N(0,5;5n+4) = N(1,5;5n+4) = \ldots = N(4,5;5n+4).$$

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$N(0,5;5n+4) = N(1,5;5n+4) = \ldots = N(4,5;5n+4).$$

Similarly for ranks mod 7 for partitions of 7n + 5.

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$N(0,5;5n+4) = N(1,5;5n+4) = \ldots = N(4,5;5n+4).$$

Similarly for ranks mod 7 for partitions of 7n + 5.

• This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$N(0,5;5n+4) = N(1,5;5n+4) = \ldots = N(4,5;5n+4).$$

Similarly for ranks mod 7 for partitions of 7n + 5.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.
- The generating function is $(q := e^{2\pi i \tau}, \tau \in \mathbb{H}, \zeta := e^{2\pi i z}, z \in \mathbb{C}, (a; q)_n = (a)_n := \prod_{j=0}^{n-1} (1 aq^j),)$:

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)

We have

$$N(0,5;5n+4) = N(1,5;5n+4) = \ldots = N(4,5;5n+4).$$

Similarly for ranks mod 7 for partitions of 7n + 5.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.
- The generating function is $(q := e^{2\pi i \tau}, \tau \in \mathbb{H}, \zeta := e^{2\pi i z}, z \in \mathbb{H})$ \mathbb{C} , $(a; q)_n = (a)_n := \prod_{i=0}^{n-1} (1 - aq^i)_i$:

$$R(\zeta;q) := \sum_{\substack{m \in \mathbb{Z} \\ n \ge 0}} N(m,n) \zeta^m q^n = \sum_{n \ge 0} \frac{q^{n^2}}{(\zeta q)_n (\zeta^{-1} q)_n}.$$

• For those who have seen partitions before:

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1.

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1. This gives the non-obvious Π = ∑ identity

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1. This gives the non-obvious Π = ∑ identity

$$(q)_{\infty}^{-1} = \sum_{n \ge 0} \frac{q^{n^2}}{(q)_n^2}$$

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1. This gives the non-obvious Π = ∑ identity

$$(q)_{\infty}^{-1} = \sum_{n \ge 0} rac{q^{n^2}}{(q)_n^2}$$

 These ∏ = ∑ identities are usually tied to Lie theory, and this is a hint of structure to come....

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1. This gives the non-obvious Π = ∑ identity

$$(q)_{\infty}^{-1} = \sum_{n \ge 0} rac{q^{n^2}}{(q)_n^2}.$$

- These ∏ = ∑ identities are usually tied to Lie theory, and this is a hint of structure to come....
- For z any other torsion point z ∈ Qτ + Q, this gives a key example of a "mock modular form."

For those who have seen partitions before: R(ζ; q) must specialize to the gen. function for p(n) at ζ = 1. This gives the non-obvious Π = ∑ identity

$$(q)_{\infty}^{-1} = \sum_{n \ge 0} \frac{q^{n^2}}{(q)_n^2}.$$

- These ∏ = ∑ identities are usually tied to Lie theory, and this is a hint of structure to come....
- For z any other torsion point z ∈ Qτ + Q, this gives a key example of a "mock modular form."
- This helped spur the growth of the field of mock modular forms/harmonic Maass forms and led to many new applications in analytic and arithmetic properties of partitions.

What about mod 11?

• Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What about mod 11?

• Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$crank(\lambda) := \begin{cases} largest part of \lambda & if no 1's in \lambda, \\ (\# parts larger than \# of 1's) - (\# of 1's) & else. \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What about mod 11?

• Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$crank(\lambda) := \begin{cases} largest part of \lambda & if no 1's in \lambda, \\ (\# parts larger than \# of 1's) - (\# of 1's) & else. \end{cases}$$

Theorem (Andrews-Garvan)

Cranks "explain" Ramanujan's congruences mod 5, 7, and 11.

Generating Function

We have

$$C(z;\tau) := \sum M(m,n)\zeta^m q^n = q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^2(\tau)}{\vartheta(z;\tau)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Generating Function

We have

$$C(z;\tau) := \sum M(m,n)\zeta^m q^n = q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^2(\tau)}{\vartheta(z;\tau)},$$

where

$$\eta(au):=q^{rac{1}{24}}(q)_\infty,\quad artheta(z; au):=\sum_{n\in\mathbb{Z}+rac{1}{2}}e^{\pi i n^2 au+rac{n}{2}(z+rac{1}{2})}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Generating Function

We have

$$C(z;\tau) := \sum M(m,n)\zeta^m q^n = q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^2(\tau)}{\vartheta(z;\tau)},$$

where

$$\eta(\tau) := q^{rac{1}{24}}(q)_{\infty}, \quad artheta(z;\tau) := \sum_{n\in\mathbb{Z}+rac{1}{2}}e^{\pi i n^2 au+rac{n}{2}(z+rac{1}{2})}.$$

• The η -function is a weight 1/2 "modular form." The ϑ -function is a "Jacobi form."

Generating Function

We have

$$C(z;\tau) := \sum M(m,n)\zeta^m q^n = q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^2(\tau)}{\vartheta(z;\tau)},$$

where

$$\eta(au):=q^{rac{1}{24}}(q)_{\infty},\quad artheta(z; au):=\sum_{n\in\mathbb{Z}+rac{1}{2}}e^{\pi i n^2 au+rac{n}{2}(z+rac{1}{2})}.$$

- The $\eta\text{-function}$ is a weight 1/2 "modular form." The $\vartheta\text{-function}$ is a "Jacobi form."
- Sanity check: must have $C(1; \tau) = \sum p(n)q^n = q^{\frac{1}{24}}\eta^{-1}(\tau)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Generating Function

We have

$$C(z;\tau) := \sum M(m,n)\zeta^m q^n = q^{\frac{1}{24}} (\zeta^{-\frac{1}{2}} - \zeta^{\frac{1}{2}}) \frac{\eta^2(\tau)}{\vartheta(z;\tau)},$$

where

$$\eta(au):=q^{rac{1}{24}}(q)_{\infty},\quad artheta(z; au):=\sum_{n\in\mathbb{Z}+rac{1}{2}}e^{\pi i n^2 au+rac{n}{2}(z+rac{1}{2})}.$$

- The $\eta\text{-function}$ is a weight 1/2 "modular form." The $\vartheta\text{-function}$ is a "Jacobi form."
- Sanity check: must have $C(1;\tau) = \sum p(n)q^n = q^{\frac{1}{24}}\eta^{-1}(\tau)$.
- This works out since $\vartheta'(0;\tau) = -2\pi\eta^3(\tau)$.

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

(日) (四) (日) (日) (日)

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

 $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]C(z;\tau).$

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

$$\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]C(z;\tau).$$

(日) (四) (日) (日) (日)

Here, Φ_{ℓ} is the ℓ -th cyclotomic polynomial, and divisibility is as Laurent polynomials.

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

$$\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]C(z;\tau).$$

Here, Φ_{ℓ} is the ℓ -th cyclotomic polynomial, and divisibility is as Laurent polynomials.

 Taking coefficients of powers of ζ, say for things like 1/ϑ^m is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

$$\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]C(z;\tau).$$

Here, Φ_{ℓ} is the ℓ -th cyclotomic polynomial, and divisibility is as Laurent polynomials.

- Taking coefficients of powers of ζ, say for things like 1/ϑ^m is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).
- Coefficients of positive powers of θ also has applications, e.g., my recent work with Jiang and Woodbury giving formulas for generalized Frobenius partitions and new combinatorial structure of other coefficients via Motzkin path counting.

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n + \beta$ is equivalent to

$$\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]C(z;\tau).$$

Here, Φ_{ℓ} is the ℓ -th cyclotomic polynomial, and divisibility is as Laurent polynomials.

- Taking coefficients of powers of ζ, say for things like 1/ϑ^m is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).
- Coefficients of positive powers of θ also has applications, e.g., my recent work with Jiang and Woodbury giving formulas for generalized Frobenius partitions and new combinatorial structure of other coefficients via Motzkin path counting.
- Looking at the coefficients of powers of *q* is uncommon.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

(日) (四) (日) (日) (日)

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

• Stanton first notes the divisibility $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]R/C(z;\tau)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]R/C(z;\tau)$.
- If the quotient had *positive* coefficients, he suggested they may count something important.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]R/C(z;\tau)$.
- If the quotient had *positive* coefficients, he suggested they may count something important.

• This doesn't work.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]R/C(z;\tau)$.
- If the quotient had *positive* coefficients, he suggested they may count something important.
- This doesn't work. This is related to unimodality, which fails as per this table of M(m, n) (from OEIS)

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a **direct bijection**?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta)|[q^{\ell n+\beta}]R/C(z;\tau)$.
- If the quotient had *positive* coefficients, he suggested they may count something important.
- This doesn't work. This is related to unimodality, which fails as per this table of M(m, n) (from OEIS)

```
. 1;
. 1, 0, 0;
. 1, 0, 0, 0;
. 1, 0, 0, 1;
. 1, 0, 1, 0, 1, 0, 1;
. 1, 0, 1, 0, 1, 0, 1;
. 1, 0, 1, 1, 1, 1, 0, 1;
. 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1;
. 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1;
. 1, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 1, 0, 1;
1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 3, 2, 3, 1, 2, 1, 1, 0, 1;
```

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$\operatorname{rank}^*_{\ell,n}(\zeta) := \operatorname{rank}_{\ell n+\beta} + \zeta^{\ell n+\beta-2} - \zeta^{\ell n+\beta-1} + \zeta^{2-\ell n-\beta} - \zeta^{1-\ell n-\beta},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$\operatorname{rank}^*_{\ell,n}(\zeta) := \operatorname{rank}_{\ell n+\beta} + \zeta^{\ell n+\beta-2} - \zeta^{\ell n+\beta-1} + \zeta^{2-\ell n-\beta} - \zeta^{1-\ell n-\beta},$$

$$\begin{aligned} \operatorname{crank}_{\ell,n}^*(\zeta) &:= \operatorname{crank}_{\ell n+\beta}(\zeta) + \zeta^{\ell n+\beta-\ell} - \zeta^{\ell n+\beta} + \zeta^{\ell-\ell n-\beta} - \zeta^{-\ell n-\beta}, \\ \end{aligned}$$
where $\beta &:= \ell - \frac{\ell^2 - 1}{24}. \end{aligned}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$\operatorname{rank}^*_{\ell,n}(\zeta) := \operatorname{rank}_{\ell n+\beta} + \zeta^{\ell n+\beta-2} - \zeta^{\ell n+\beta-1} + \zeta^{2-\ell n-\beta} - \zeta^{1-\ell n-\beta},$$

$$\begin{aligned} \operatorname{crank}_{\ell,n}^*(\zeta) &:= \operatorname{crank}_{\ell n+\beta}(\zeta) + \zeta^{\ell n+\beta-\ell} - \zeta^{\ell n+\beta} + \zeta^{\ell-\ell n-\beta} - \zeta^{-\ell n-\beta}, \\ \end{aligned}$$
where $\beta &:= \ell - \frac{\ell^2 - 1}{24}. \end{aligned}$

Conjecture (Stanton)

All of the following are Laurent polynomials with positive coefficients:

$$\frac{\operatorname{rank}_{5,n}^*(\zeta)}{\Phi_5(\zeta)}, \ \frac{\operatorname{rank}_{7,n}^*(\zeta)}{\Phi_7(\zeta)}, \ \frac{\operatorname{crank}_{5,n}^*(\zeta)}{\Phi_5(\zeta)}, \quad \frac{\operatorname{crank}_{7,n}^*(\zeta)}{\Phi_7(\zeta)}, \ \frac{\operatorname{crank}_{11,n}^*(\zeta)}{\Phi_{11}(\zeta)}.$$

Recent problems in partitions and other combinatorial functions

Theorem (Bringmann, Gomez, R., Tripp, 2021) The crank part of Stanton's Conjecture is true.

• It turns out that this relates to inequalities of crank numbers...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recent problems in partitions and other combinatorial functions

Theorem (Bringmann, Gomez, R., Tripp, 2021) The crank part of Stanton's Conjecture is true.

• It turns out that this relates to inequalities of crank numbers. . . more on such inequalities later.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

What do the positive coefficients mean?

・ロト・西ト・山田・山田・山口・

Question

What do the positive coefficients mean?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Lie theory interpretation?

Question

What do the positive coefficients mean?

(日) (四) (日) (日) (日)

• Lie theory interpretation?

Question

What about ranks?

Question

What do the positive coefficients mean?

• Lie theory interpretation?

Question

What about ranks?

• Forthcoming work by Bringmann, Gomez, Males, R.,

Question

What do the positive coefficients mean?

• Lie theory interpretation?

Question

What about ranks?

- Forthcoming work by Bringmann, Gomez, Males, R.,
- Bivariate distributions of ranks and cranks in ranges go back to a physics-inspired conjecture of Dyson; state of the art due to Bringmann-Dousse.

Question

What do the positive coefficients mean?

• Lie theory interpretation?

Question

What about ranks?

- Forthcoming work by Bringmann, Gomez, Males, R.,
- Bivariate distributions of ranks and cranks in ranges go back to a physics-inspired conjecture of Dyson; state of the art due to Bringmann-Dousse.

Question

Is there a more general phenomenon?

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• There are various known Ramanujan-like congruences:

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• There are various known Ramanujan-like congruences:

1 When
$$k \equiv 0 \pmod{\ell}$$
:

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

• There are various known Ramanujan-like congruences:

() When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

2 When $k \equiv -1 \pmod{\ell}$:

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

2 When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

- **2** When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.
- 3 When $k \equiv -3 \pmod{\ell}$:

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

- **2** When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.
- **(3)** When $k \equiv -3 \pmod{\ell}$: \rightsquigarrow Jacobi Triple Product.

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."

- **2** When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.
- **(3)** When $k \equiv -3 \pmod{\ell}$: \rightsquigarrow Jacobi Triple Product.
- **(a)** When $k \equiv -4, -6, -8, -10, -14, -26 \pmod{\ell}$:

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."
 - **2** When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.
 - **(a)** When $k \equiv -3 \pmod{\ell}$: \rightsquigarrow Jacobi Triple Product.
 - When k ≡ -4, -6, -8, -10, -14, -26 (mod ℓ): → Boylan found these using CM modular forms.

Definition

The k-colored partitions are defined via generating functions as

$$\sum_{n\geq 0}p_k(n)q^n=:(q)_{\infty}^{-k}.$$

- There are various known Ramanujan-like congruences:
 - **(**) When $k \equiv 0 \pmod{\ell}$: \rightsquigarrow Freshmen's Dream/"work mod ℓ ."
 - 2 When $k \equiv -1 \pmod{\ell}$: \rightsquigarrow Pentagonal Number Theorem.
 - **(a)** When $k \equiv -3 \pmod{\ell}$: \rightsquigarrow Jacobi Triple Product.
 - When k ≡ -4, -6, -8, -10, -14, -26 (mod ℓ): → Boylan found these using CM modular forms.

Question

Are there combinatorial interpretations for these congruences?

1 $k \equiv 2 \pmod{\ell}$: \rightsquigarrow Hammond-Leiws, Andrews, Garvan.

k ≡ 2 (mod ℓ): → Hammond-Leiws, Andrews, Garvan.
k ≡ -2, -3 (mod ℓ): → Garvan.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1 $k \equiv 2 \pmod{\ell}$: \rightsquigarrow Hammond-Leiws, Andrews, Garvan.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 2 $k \equiv -2, -3 \pmod{\ell}$: \rightsquigarrow Garvan.
- \bigcirc Else: \rightsquigarrow : None.

- **1** $k \equiv 2 \pmod{\ell}$: \rightsquigarrow Hammond-Leiws, Andrews, Garvan.
- 2 $k \equiv -2, -3 \pmod{\ell}$: \rightsquigarrow Garvan.
- \bigcirc Else: \rightsquigarrow : None.

Remark

The cases $k \equiv -4, -6, -8, -10, -14 \pmod{\ell}$ can be seen as coming from Macdonald identities.

- **1** $k \equiv 2 \pmod{\ell}$: \rightsquigarrow Hammond-Leiws, Andrews, Garvan.
- 2 $k \equiv -2, -3 \pmod{\ell}$: \rightsquigarrow Garvan.

 \bigcirc Else: \rightsquigarrow : None.

Remark

The cases $k \equiv -4, -6, -8, -10, -14 \pmod{\ell}$ can be seen as coming from Macdonald identities. The case of 26 is still a mystery (old question of Dyson, Serre, et al on η^{26} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

Let k be odd (we'll skip the even k).

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta = 1$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta = 1$:

$$C_k(a_1,\ldots,a_{\frac{k+1}{2}}) := C(0;\tau)^{\frac{k-1}{2}} \prod_{j=1}^{\frac{k+1}{2}} C(a_j z;\tau).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta = 1$:

$$C_k(a_1,\ldots,a_{rac{k+1}{2}}):=C(0; au)^{rac{k-1}{2}}\prod_{j=1}^{rac{k+1}{2}}C(a_iz; au).$$

Theorem (Tripp-R.-Wagner 2020)

There is an infinite family of crank functions $C_k(z; \tau)$ which explain "most" congruences of colored partitions.

Examples

• Sample excluded case: There is an odd prime $p \equiv 2 \pmod{3}$ with p|(k+14), $\ell \equiv 2 \pmod{3}$, and $\ell|(k+8)$.

Examples

- Sample excluded case: There is an odd prime $p \equiv 2 \pmod{3}$ with p|(k+14), $\ell \equiv 2 \pmod{3}$, and $\ell|(k+8)$.
- The definition of the vectors is given for odd k by:

$$C_k(z; \tau) := egin{cases} C_k(k, (k-2), 1 \dots; \tau) &
end{cases} &
end{cases} \mathcal{I}_k(k+2, k-2, \dots; \tau), &
end{cases} \mathcal{I}_k(k+14), \\
end{cases} &
end{cases} &
end{cases} \mathcal{I}_k(k+14), &
end{cases} &
end{cases$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Examples

- Sample excluded case: There is an odd prime p ≡ 2 (mod 3) with p|(k + 14), ℓ ≡ 2 (mod 3), and ℓ|(k + 8).
- The definition of the vectors is given for odd k by:

$$C_k(z; \tau) := egin{cases} C_k(k, (k-2), 1 \dots; \tau) &
end{cases} &
end{cases} = 3r + 2|(k+14), \\ C_k(k+2, k-2, \dots, 1; \tau), &
end{cases} &
end{$$

 Idea: Use new theory of Gritsenko-Skoruppa-Zagier's theta blocks to give convenient constructions using Lie-theoretic formulas that make it easier to "discover" such functions in large families.

On this be done for higher prime powers?

Questions

- O Can this be done for higher prime powers?
- What about other combinatorial functions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Questions

- On this be done for higher prime powers?
- What about other combinatorial functions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stanton-type conjectures?

Questions

- On this be done for higher prime powers?
- What about other combinatorial functions?
- Stanton-type conjectures?

Theorem (Bringmann-Gomez-R.-Tripp, 2021)

There are families of Stanton-type conjectures that appear to hold for these families.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}\prod_{h\in\mathcal{H}(\lambda)}(1-rac{a}{h^2})=q^{rac{1-lpha}{24}}\eta^{a-1}(au).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}\prod_{h\in\mathcal{H}(\lambda)}(1-rac{a}{h^2})=q^{rac{1-lpha}{24}}\eta^{a-1}(au).$$

• $\mathcal{H}(\lambda)$ are the "hook lengths."

• Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$\sum_{\lambda\in\mathcal{P}}q^{|\lambda|}\prod_{h\in\mathcal{H}(\lambda)}(1-rac{a}{h^2})=q^{rac{1-lpha}{24}}\eta^{a-1}(au).$$

- $\mathcal{H}(\lambda)$ are the "hook lengths."
- First studied in the context of supersymmetric gauge theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)

The partition function is eventually log-concave:

$$p(n)^2 \ge p(n-1)p(n+1), \quad (n > 25).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)

The partition function is eventually log-concave:

$$p(n)^2 \ge p(n-1)p(n+1), \quad (n > 25).$$

• An infinite family of generalizations of this was proven by Griffin-Ono-R.-Zagier, with analogous results which gave new evidence for the Riemann Hypothesis.

(日) (四) (日) (日) (日)

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)

The partition function is eventually log-concave:

$$p(n)^2 \ge p(n-1)p(n+1), \quad (n > 25).$$

- An infinite family of generalizations of this was proven by Griffin-Ono-R.-Zagier, with analogous results which gave new evidence for the Riemann Hypothesis.
- Another multiplicative inequality was given by Bessenrodt-Ono:

$$p(a)p(b) \ge p(a+b), \quad (a,b \ge 2 \ a+b > 8).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Conjectures for arbitrary eta function powers

Conjecture (Chern-Fu-Tang) For $n, \ell \in \mathbb{N}$, $k \in \mathbb{N}_{\geq 2}$, $n > \ell$, $(k, n, \ell) \neq (2, 6, 4)$, we have $p_k(n-1)p_k(\ell+1) \ge p_k(n)p_k(\ell)$.

Conjectures for arbitrary eta function powers

Conjecture (Chern-Fu-Tang) For $n, \ell \in \mathbb{N}$, $k \in \mathbb{N}_{\geq 2}$, $n > \ell$, $(k, n, \ell) \neq (2, 6, 4)$, we have $p_k(n-1)p_k(\ell+1) \ge p_k(n)p_k(\ell)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Conjecture (Heim-Neuhauser)

The same holds for any $k \in \mathbb{R}_{\geq 2}$.

Final result

Theorem (Bringmann-Kane-R.-Tripp)

The conjecture of Chern-Fu-Tang is true.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recent problems in partitions and other combinatorial functions

Final result

Theorem (Bringmann-Kane-R.-Tripp) The conjecture of Chern-Fu-Tang is true.

• The proof uses exact formulas for $p_k(n)$ due to Iskander-Jain-Talvola.

Final result

Theorem (Bringmann-Kane-R.-Tripp) The conjecture of Chern-Fu-Tang is true.

 The proof uses exact formulas for p_k(n) due to Iskander-Jain-Talvola. Then explicit error bounds and estimations, plus a big computer check of finitely many cases.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●