Recent problems in partitions and other combinatorial functions

Larry Rolen

Vanderbilt University
October 18, 2021
Oregon State University Math Colloquium [Credit: Math \cap Programming Blog]

Partitions

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:
4,

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1,
$$

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2,
$$

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1,
$$

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1
$$

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1
$$

Thus, $p(4)=5$.

Integer partitions

Definition

An integer partition of n is a sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ such that

$$
\lambda_{1}+\ldots+\lambda_{k}=n
$$

We denote the number of partitions of n by $p(n)$.

Example

The partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1
$$

Thus, $p(4)=5$. In particular, $5 \mid p(4)$.

Amuse-bouche

Example

Two partitions of 13, in both math and English, are:

Amuse-bouche

Example

Two partitions of 13, in both math and English, are:
$13=$ Eleven Plus Two $=$ Twelve Plus One.

Partition applications

- Partitions show up throughout mathematics and physics.

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture:

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n};

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n}; many properties of the representations "encoded" in partition structure.

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei... many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n}; many properties of the representations "encoded" in partition structure.
- Partitions also show up in...

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n}; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems),

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n}; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems), modeling cyrstals and Bose-Eisenstein condensates,

Partition applications

- Partitions show up throughout mathematics and physics.
- Studying their growth rate led to the Circle Method, which is a major tool in analytic number theory.
- The Circle Method was used by Helfgott to prove the weak Goldbach Conjecture: All odd numbers greater than 5 are a sum of three primes.
- The growth rate of $p(n)$ was used by Bohr and Kalckar to calculate energy levels in heavy nuclei. . . many other applications in physics.
- Partitions are in bijection with irreducible representations of the symmetric group S_{n}; many properties of the representations "encoded" in partition structure.
- Partitions also show up in... algebraic geometry (counting problems), modeling cyrstals and Bose-Eisenstein condensates, Cardy formulas in conformal field theory.

Partition properties

- Partitions also have many beautiful properties.

Partition properties

- Partitions also have many beautiful properties.
- They have analytic properties.

Partition properties

- Partitions also have many beautiful properties.
- They have analytic properties.
- The Hardy-Ramanujan asymptotic for $p(n)$ is

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}} .
$$

Partition properties

- Partitions also have many beautiful properties.
- They have analytic properties.
- The Hardy-Ramanujan asymptotic for $p(n)$ is

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}} .
$$

[Credit:Jon Perry (June 2011)]

Even more precise

- This can be extended to an exact formula of Rademacher:

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k \geq 1} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

Even more precise

- This can be extended to an exact formula of Rademacher:

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k \geq 1} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

- $A_{k}(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.

Even more precise

- This can be extended to an exact formula of Rademacher:

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k \geq 1} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

- $A_{k}(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.
[Credit: Kowalski's Blog]

Even more precise

- This can be extended to an exact formula of Rademacher:

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k \geq 1} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

- $A_{k}(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.
[Credit: Kowalski's Blog]
- Later, we'll see explicit inequalities, like log-concavity:

Even more precise

- This can be extended to an exact formula of Rademacher:

$$
p(n)=\frac{2 \pi}{(24 n-1)^{\frac{3}{4}}} \sum_{k \geq 1} \frac{A_{k}(n)}{k} I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) .
$$

- $A_{k}(n)$ are "wild" exponential sums, $I_{\frac{3}{2}}(\cdot)$ is a Bessel function.
[Credit: Kowalski's Blog]
- Later, we'll see explicit inequalities, like log-concavity:

$$
p(n)^{2} \geq p(n-1) p(n+1) \quad(n>25) .
$$

Arithmetic properties

- Partitions also satisfy beautiful congruences.

Arithmetic properties

- Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Arithmetic properties

- Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

Arithmetic properties

- Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

- Congruences exist for other primes, but they look like this:

$$
p\left(107^{4} \cdot 31 k+30064597\right) \equiv 0 \quad(\bmod 31) \quad \text { Ono, } 2000 .
$$

Arithmetic properties

- Partitions also satisfy beautiful congruences.

Theorem (Ramanujan's Congruences 1919; Hardy-Ramanujan)

$$
\begin{gathered}
p(5 n+4) \equiv 0 \quad(\bmod 5), \quad p(7 n+5) \equiv 0 \quad(\bmod 7) \\
p(11 n+6) \equiv 0 \quad(\bmod 11)
\end{gathered}
$$

Theorem (Ahlgren-Boylan (2003))
5,7 , and 11 are the only primes with "nice" congruences like this.

- Congruences exist for other primes, but they look like this:

$$
p\left(107^{4} \cdot 31 k+30064597\right) \equiv 0 \quad(\bmod 31) \quad \text { Ono, } 2000
$$

- Originally only q-series (analytic) proofs (gen. functions).

A combinatorial realization?

Definition (Dyson 1944)
$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

A combinatorial realization?

Definition (Dyson 1944)
 $\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry."

A combinatorial realization?

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

A combinatorial realization?

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

A combinatorial realization?

Definition (Dyson 1944)

$\operatorname{rank}(\lambda)=$ largest part $\lambda_{1}-\#$ of parts k.

- This is a measure of "failure of symmetry." Namely, for reflecting Young diagram's across the line $y=-x$.

- $N(m, n):=\#\{$ ptns of n with rank $m\}$, $N(m, q ; n):=\#\{$ ptns of n with rank $\equiv m(\bmod q)\}$.

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4)
$$

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4)
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4)
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4) .
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.
- The generating function is $\left(q:=e^{2 \pi i \tau}, \tau \in \mathbb{H}, \zeta:=e^{2 \pi i z}, z \in\right.$ $\left.\mathbb{C},(a ; q)_{n}=(a)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right),\right):$

Dyson's Conjecture

Theorem (Conjecture of Dyson 1944, proven by Atkin and Swinnerton-Dyer in 1954)
We have

$$
N(0,5 ; 5 n+4)=N(1,5 ; 5 n+4)=\ldots=N(4,5 ; 5 n+4)
$$

Similarly for ranks mod 7 for partitions of $7 n+5$.

- This "explains" Ramanujan's congruences mod 5 and 7 using a combinatorial object.
- The generating function is $\left(q:=e^{2 \pi i \tau}, \tau \in \mathbb{H}, \zeta:=e^{2 \pi i z}, z \in\right.$ $\left.\mathbb{C},(a ; q)_{n}=(a)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right),\right):$

$$
R(\zeta ; q):=\sum_{\substack{m \in \mathbb{Z} \\ n \geq 0}} N(m, n) \zeta^{m} q^{n}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(\zeta q)_{n}\left(\zeta^{-1} q\right)_{n}}
$$

Comments on ranks

- For those who have seen partitions before:

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$.

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$. This gives the non-obvious $\Pi=\sum$ identity

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$. This gives the non-obvious $\Pi=\sum$ identity

$$
(q)_{\infty}^{-1}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}^{2}}
$$

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$. This gives the non-obvious $\Pi=\sum$ identity

$$
(q)_{\infty}^{-1}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}^{2}}
$$

- These $\Pi=\sum$ identities are usually tied to Lie theory, and this is a hint of structure to come....

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$. This gives the non-obvious $\Pi=\sum$ identity

$$
(q)_{\infty}^{-1}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}^{2}}
$$

- These $\Pi=\sum$ identities are usually tied to Lie theory, and this is a hint of structure to come....
- For z any other torsion point $z \in \mathbb{Q} \tau+\mathbb{Q}$, this gives a key example of a "mock modular form."

Comments on ranks

- For those who have seen partitions before: $R(\zeta ; q)$ must specialize to the gen. function for $p(n)$ at $\zeta=1$. This gives the non-obvious $\Pi=\sum$ identity

$$
(q)_{\infty}^{-1}=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}^{2}}
$$

- These $\Pi=\sum$ identities are usually tied to Lie theory, and this is a hint of structure to come....
- For z any other torsion point $z \in \mathbb{Q} \tau+\mathbb{Q}$, this gives a key example of a "mock modular form."
- This helped spur the growth of the field of mock modular forms/harmonic Maass forms and led to many new applications in analytic and arithmetic properties of partitions.

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$
\operatorname{crank}(\lambda):=\left\{\begin{array}{ll}
\text { largest part of } \lambda & \text { if no 1's in } \lambda, \\
(\# \text { parts larger than \# of 1's })-(\# \text { of } 1 ' s)
\end{array} \quad \text { else. } .\right.
$$

What about mod 11?

- Dyson: there may be a "crank function" explaining all of Ramanujan's congruences.

Definition (Andrews-Garvan, 1988)

$$
\operatorname{crank}(\lambda):=\left\{\begin{array}{ll}
\text { largest part of } \lambda & \text { if no } 1 \text { 's in } \lambda, \\
(\# \text { parts larger than \# of } 1 \text { 's })-(\# \text { of } 1 ' s)
\end{array} \quad \text { else. } .\right.
$$

Theorem (Andrews-Garvan)
Cranks "explain" Ramanujan's congruences mod 5, 7, and 11.

Remarks on cranks

Generating Function

We have

$$
C(z ; \tau):=\sum M(m, n) \zeta^{m} q^{n}=q^{\frac{1}{24}}\left(\zeta^{-\frac{1}{2}}-\zeta^{\frac{1}{2}}\right) \frac{\eta^{2}(\tau)}{\vartheta(z ; \tau)},
$$

Remarks on cranks

Generating Function

We have

$$
C(z ; \tau):=\sum M(m, n) \zeta^{m} q^{n}=q^{\frac{1}{24}}\left(\zeta^{\frac{1}{2}}-\zeta^{\frac{1}{2}}\right) \frac{\eta^{2}(\tau)}{\vartheta(z ; \tau)},
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}}(q)_{\infty}, \quad \vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}+\frac{1}{2}} e^{\pi i n^{2} \tau+\frac{n}{2}\left(z+\frac{1}{2}\right)} .
$$

Remarks on cranks

Generating Function

We have

$$
C(z ; \tau):=\sum M(m, n) \zeta^{m} q^{n}=q^{\frac{1}{24}}\left(\zeta^{-\frac{1}{2}}-\zeta^{\frac{1}{2}}\right) \frac{\eta^{2}(\tau)}{\vartheta(z ; \tau)},
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}}(q)_{\infty}, \quad \vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}+\frac{1}{2}} e^{\pi i n^{2} \tau+\frac{n}{2}\left(z+\frac{1}{2}\right)}
$$

- The η-function is a weight $1 / 2$ "modular form." The ϑ-function is a "Jacobi form."

Remarks on cranks

Generating Function

We have

$$
C(z ; \tau):=\sum M(m, n) \zeta^{m} q^{n}=q^{\frac{1}{24}}\left(\zeta^{-\frac{1}{2}}-\zeta^{\frac{1}{2}}\right) \frac{\eta^{2}(\tau)}{\vartheta(z ; \tau)}
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}}(q)_{\infty}, \quad \vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}+\frac{1}{2}} e^{\pi i n^{2} \tau+\frac{n}{2}\left(z+\frac{1}{2}\right)}
$$

- The η-function is a weight $1 / 2$ "modular form." The ϑ-function is a "Jacobi form."
- Sanity check: must have $C(1 ; \tau)=\sum p(n) q^{n}=q^{\frac{1}{24}} \eta^{-1}(\tau)$.

Remarks on cranks

Generating Function

We have

$$
C(z ; \tau):=\sum M(m, n) \zeta^{m} q^{n}=q^{\frac{1}{24}}\left(\zeta^{-\frac{1}{2}}-\zeta^{\frac{1}{2}}\right) \frac{\eta^{2}(\tau)}{\vartheta(z ; \tau)}
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}}(q)_{\infty}, \quad \vartheta(z ; \tau):=\sum_{n \in \mathbb{Z}+\frac{1}{2}} e^{\pi i n^{2} \tau+\frac{n}{2}\left(z+\frac{1}{2}\right)}
$$

- The η-function is a weight $1 / 2$ "modular form." The ϑ-function is a "Jacobi form."
- Sanity check: must have $C(1 ; \tau)=\sum p(n) q^{n}=q^{\frac{1}{24}} \eta^{-1}(\tau)$.
- This works out since $\vartheta^{\prime}(0 ; \tau)=-2 \pi \eta^{3}(\tau)$.

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau)
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

- Taking coefficients of powers of ζ, say for things like $1 / \vartheta^{m}$ is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau) .
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

- Taking coefficients of powers of ζ, say for things like $1 / \vartheta^{m}$ is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).
- Coefficients of positive powers of ϑ also has applications, e.g., my recent work with Jiang and Woodbury giving formulas for generalized Frobenius partitions and new combinatorial structure of other coefficients via Motzkin path counting.

Reframing the combinatorial proofs

Elementary Fact

The equidistribution for cranks mod ℓ on a progression $\ell n+\beta$ is equivalent to

$$
\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] C(z ; \tau) .
$$

Here, Φ_{ℓ} is the ℓ-th cyclotomic polynomial, and divisibility is as Laurent polynomials.

- Taking coefficients of powers of ζ, say for things like $1 / \vartheta^{m}$ is common in Jacobi forms (has applications to Kac-Wakimoto characters of Lie superalgebras).
- Coefficients of positive powers of ϑ also has applications, e.g., my recent work with Jiang and Woodbury giving formulas for generalized Frobenius partitions and new combinatorial structure of other coefficients via Motzkin path counting.
- Looking at the coefficients of powers of q is uncommon.

A question of Stanton

Question (Stanton)
Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.
- This doesn't work.

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.
- This doesn't work. This is related to unimodality, which fails as per this table of $M(m, n)$ (from OEIS)

A question of Stanton

Question (Stanton)

Ranks and cranks distribute partitions into equinumerous sets. Can we find a direct bijection?

- Stanton first notes the divisibility $\Phi_{\ell}(\zeta) \mid\left[q^{\ell n+\beta}\right] R / C(z ; \tau)$.
- If the quotient had positive coefficients, he suggested they may count something important.
- This doesn't work. This is related to unimodality, which fails as per this table of $M(m, n)$ (from OEIS)

```
                                    1;
                                    1, 0, 0;
                                    1, 0, 0, 0, 1;
                                    1, 0, 0, 1, 0, 0, 1;
                                    1, 0, 1, 0, 1, 0, 1, 0, 1;
                                    1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1;
    1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1;
. 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1;
. 1, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1;
1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 3, 2, 3, 1, 2, 1, 1, 0, 1;
```


Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:

$$
\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}
$$

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Stanton's Conjecture

Definition (Stanton)

The modified rank and crank are:
$\operatorname{rank}_{\ell, n}^{*}(\zeta):=\operatorname{rank}_{\ell n+\beta}+\zeta^{\ell n+\beta-2}-\zeta^{\ell n+\beta-1}+\zeta^{2-\ell n-\beta}-\zeta^{1-\ell n-\beta}$,
$\operatorname{crank}_{\ell, n}^{*}(\zeta):=\operatorname{crank}_{\ell n+\beta}(\zeta)+\zeta^{\ell n+\beta-\ell}-\zeta^{\ell n+\beta}+\zeta^{\ell-\ell n-\beta}-\zeta^{-\ell n-\beta}$, where $\beta:=\ell-\frac{\ell^{2}-1}{24}$.

Conjecture (Stanton)

All of the following are Laurent polynomials with positive coefficients:

$$
\frac{\operatorname{rank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \frac{\operatorname{rank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{5, n}^{*}(\zeta)}{\Phi_{5}(\zeta)}, \quad \frac{\operatorname{crank}_{7, n}^{*}(\zeta)}{\Phi_{7}(\zeta)}, \frac{\operatorname{crank}_{11, n}^{*}(\zeta)}{\Phi_{11}(\zeta)}
$$

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.

- It turns out that this relates to inequalities of crank numbers...

Result for cranks

Theorem (Bringmann, Gomez, R., Tripp, 2021)
The crank part of Stanton's Conjecture is true.

- It turns out that this relates to inequalities of crank numbers... more on such inequalities later.

Natural questions

Question

What do the positive coefficients mean?

Natural questions

Question

What do the positive coefficients mean?

- Lie theory interpretation?

Natural questions

Question

What do the positive coefficients mean?

- Lie theory interpretation?

Question

What about ranks?

Natural questions

Question

What do the positive coefficients mean?

- Lie theory interpretation?

Question

What about ranks?

- Forthcoming work by Bringmann, Gomez, Males, R.,

Natural questions

Question

What do the positive coefficients mean?

- Lie theory interpretation?

Question

What about ranks?

- Forthcoming work by Bringmann, Gomez, Males, R.,
- Bivariate distributions of ranks and cranks in ranges go back to a physics-inspired conjecture of Dyson; state of the art due to Bringmann-Dousse.

Natural questions

Question

What do the positive coefficients mean?

- Lie theory interpretation?

Question

What about ranks?

- Forthcoming work by Bringmann, Gomez, Males, R.,
- Bivariate distributions of ranks and cranks in ranges go back to a physics-inspired conjecture of Dyson; state of the art due to Bringmann-Dousse.

Question

Is there a more general phenomenon?

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell)$:

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell)$:

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell)$:

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/ "work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.
(9) When $k \equiv-4,-6,-8,-10,-14,-26(\bmod \ell)$:

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \rightsquigarrow$ Jacobi Triple Product.
(9) When $k \equiv-4,-6,-8,-10,-14,-26(\bmod \ell): \rightsquigarrow$ Boylan found these using CM modular forms.

A test case

Definition

The k-colored partitions are defined via generating functions as

$$
\sum_{n \geq 0} p_{k}(n) q^{n}=:(q)_{\infty}^{-k}
$$

- There are various known Ramanujan-like congruences:
(1) When $k \equiv 0(\bmod \ell): \rightsquigarrow$ Freshmen's Dream/"work mod ℓ."
(2) When $k \equiv-1(\bmod \ell): \rightsquigarrow$ Pentagonal Number Theorem.
(3) When $k \equiv-3(\bmod \ell): \leadsto$ Jacobi Triple Product.
(9) When $k \equiv-4,-6,-8,-10,-14,-26(\bmod \ell): \rightsquigarrow$ Boylan found these using CM modular forms.

Question

Are there combinatorial interpretations for these congruences?

Previous work

(1) $k \equiv 2(\bmod \ell): \rightsquigarrow$ Hammond-Leiws, Andrews, Garvan.

Previous work

(1) $k \equiv 2(\bmod \ell): \rightsquigarrow$ Hammond-Leiws, Andrews, Garvan.
(2) $k \equiv-2,-3(\bmod \ell): \rightsquigarrow$ Garvan.

Previous work

(1) $k \equiv 2(\bmod \ell): \rightsquigarrow$ Hammond-Leiws, Andrews, Garvan.
(2) $k \equiv-2,-3(\bmod \ell): \rightsquigarrow$ Garvan.
(3) Else: \rightsquigarrow : None.

Previous work

(1) $k \equiv 2(\bmod \ell): \rightsquigarrow$ Hammond-Leiws, Andrews, Garvan.
(2) $k \equiv-2,-3(\bmod \ell): \rightsquigarrow$ Garvan.
(3) Else: \rightsquigarrow : None.

Remark

The cases $k=\equiv-4,-6,-8,-10,-14(\bmod \ell)$ can be seen as coming from Macdonald identities.

Previous work

(1) $k \equiv 2(\bmod \ell): \rightsquigarrow$ Hammond-Leiws, Andrews, Garvan.
(2) $k \equiv-2,-3(\bmod \ell): \rightsquigarrow$ Garvan.
(3) Else: \rightsquigarrow : None.

Remark

The cases $k=\equiv-4,-6,-8,-10,-14(\bmod \ell)$ can be seen as coming from Macdonald identities. The case of 26 is still a mystery (old question of Dyson, Serre, et al on η^{26}.

A tool for "discovering" crank functions

Definition

Let k be odd (we'll skip the even k).

A tool for "discovering" crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$:

A tool for "discovering" crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$:

$$
C_{k}\left(a_{1}, \ldots, a_{\frac{k+1}{2}}\right):=C(0 ; \tau)^{\frac{k-1}{2}} \prod_{j=1}^{\frac{k+1}{2}} C\left(a_{i} z ; \tau\right) .
$$

A tool for "discovering" crank functions

Definition

Let k be odd (we'll skip the even k). For any vector $a \in \mathbb{N}^{\frac{k+1}{2}}$, define the product of crank functions which specialize to η^{-k} when $\zeta=1$:

$$
C_{k}\left(a_{1}, \ldots, a_{\frac{k+1}{2}}\right):=C(0 ; \tau)^{\frac{k-1}{2}} \prod_{j=1}^{\frac{k+1}{2}} C\left(a_{i} z ; \tau\right) .
$$

Theorem (Tripp-R.-Wagner 2020)
There is an infinite family of crank functions $C_{k}(z ; \tau)$ which explain "most" congruences of colored partitions.

Examples

- Sample excluded case: There is an odd prime $p \equiv 2(\bmod 3)$ with $p \mid(k+14), \ell \equiv 2(\bmod 3)$, and $\ell \mid(k+8)$.

Examples

- Sample excluded case: There is an odd prime $p \equiv 2(\bmod 3)$ with $p \mid(k+14), \ell \equiv 2(\bmod 3)$, and $\ell \mid(k+8)$.
- The definition of the vectors is given for odd k by:

$$
C_{k}(z ; \tau):=\left\{\begin{array}{l}
C_{k}(k,(k-2), 1 \ldots ; \tau) \quad \nexists \ell=3 r+2 \mid(k+14) \\
C_{k}(k+2, k-2, \ldots, 1 ; \tau), \text { otherwise }
\end{array}\right.
$$

Examples

- Sample excluded case: There is an odd prime $p \equiv 2(\bmod 3)$ with $p \mid(k+14), \ell \equiv 2(\bmod 3)$, and $\ell \mid(k+8)$.
- The definition of the vectors is given for odd k by:

$$
C_{k}(z ; \tau):=\left\{\begin{array}{l}
C_{k}(k,(k-2), 1 \ldots ; \tau) \quad \nexists \ell=3 r+2 \mid(k+14) \\
C_{k}(k+2, k-2, \ldots, 1 ; \tau), \text { otherwise }
\end{array}\right.
$$

- Idea: Use new theory of Gritsenko-Skoruppa-Zagier's theta blocks to give convenient constructions using Lie-theoretic formulas that make it easier to "discover" such functions in large families.

Questions

(1) Can this be done for higher prime powers?

Questions

(1) Can this be done for higher prime powers?
(2) What about other combinatorial functions?

Questions

(1) Can this be done for higher prime powers?
(2) What about other combinatorial functions?
(3) Stanton-type conjectures?

Questions

(1) Can this be done for higher prime powers?
(2) What about other combinatorial functions?
(3) Stanton-type conjectures?

Theorem (Bringmann-Gomez-R.-Tripp, 2021)
There are families of Stanton-type conjectures that appear to hold for these families.

Powers of the eta function

- Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

Powers of the eta function

- Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$
\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{a}{h^{2}}\right)=q^{\frac{1-\alpha}{24}} \eta^{a-1}(\tau)
$$

Powers of the eta function

- Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$
\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{a}{h^{2}}\right)=q^{\frac{1-\alpha}{24}} \eta^{a-1}(\tau)
$$

- $\mathcal{H}(\lambda)$ are the "hook lengths."

Powers of the eta function

- Nekrasov-Okounkov formula (\mathcal{P} is the set of partitions; $|\lambda|$ is the number partitioned)

$$
\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{a}{h^{2}}\right)=q^{\frac{1-\alpha}{24}} \eta^{a-1}(\tau)
$$

- $\mathcal{H}(\lambda)$ are the "hook lengths."
- First studied in the context of supersymmetric gauge theory.

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)
The partition function is eventually log-concave:

$$
p(n)^{2} \geq p(n-1) p(n+1), \quad(n>25) .
$$

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)
The partition function is eventually log-concave:

$$
p(n)^{2} \geq p(n-1) p(n+1), \quad(n>25) .
$$

- An infinite family of generalizations of this was proven by Griffin-Ono-R.-Zagier, with analogous results which gave new evidence for the Riemann Hypothesis.

Partition Inequalities

Theorem (De Salvo-Pak, Nicolas)

The partition function is eventually log-concave:

$$
p(n)^{2} \geq p(n-1) p(n+1), \quad(n>25)
$$

- An infinite family of generalizations of this was proven by Griffin-Ono-R.-Zagier, with analogous results which gave new evidence for the Riemann Hypothesis.
- Another multiplicative inequality was given by Bessenrodt-Ono:

$$
p(a) p(b) \geq p(a+b), \quad(a, b \geq 2 a+b>8) .
$$

Conjectures for arbitrary eta function powers

Conjecture (Chern-Fu-Tang)
For $n, \ell \in \mathbb{N}, k \in \mathbb{N}_{\geq 2}, n>\ell,(k, n, \ell) \neq(2,6,4)$, we have

$$
p_{k}(n-1) p_{k}(\ell+1) \geq p_{k}(n) p_{k}(\ell) .
$$

Conjectures for arbitrary eta function powers

Conjecture (Chern-Fu-Tang)
For $n, \ell \in \mathbb{N}, k \in \mathbb{N}_{\geq 2}, n>\ell,(k, n, \ell) \neq(2,6,4)$, we have

$$
p_{k}(n-1) p_{k}(\ell+1) \geq p_{k}(n) p_{k}(\ell) .
$$

Conjecture (Heim-Neuhauser)
The same holds for any $k \in \mathbb{R}_{\geq 2}$.

Final result

Theorem (Bringmann-Kane-R.-Tripp)

The conjecture of Chern-Fu-Tang is true.

Final result

Theorem (Bringmann-Kane-R.-Tripp)

The conjecture of Chern-Fu-Tang is true.

- The proof uses exact formulas for $p_{k}(n)$ due to Iskander-Jain-Talvola.

Final result

Theorem (Bringmann-Kane-R.-Tripp)

The conjecture of Chern-Fu-Tang is true.

- The proof uses exact formulas for $p_{k}(n)$ due to Iskander-Jain-Talvola. Then explicit error bounds and estimations, plus a big computer check of finitely many cases.

Thank you!!!

