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Periodicities for Taylor coefficients of half-integral weight modular forms

q-expansions of modular forms: Philosophy

Modular forms are usually studied via q-expansions.

This gives the connection to classical applications, e.g., divisor
sums, representations of integers by quad. forms, partitions.

∞ is a “natural” point to expand near:

The modular curves Γ0(N)\H aren’t compact, so one has to
add in the cusps, which are distinguished points.
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Nice properties of q-expansions

There are bases of modular forms spaces with “nice”
coefficients at these points.

Natural way to build these spaces: Poincaré series.

Petersson slash action: f |kγ := (cτ + d)−k f (τ).

f is “modular” at γ ⇐⇒ f |kγ = f .
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Poincaré series

Idea: Build invariant functions as a group average:

PN,k,m(τ) :=
∑

γ∈Γ∞\Γ0(N)

(qm)|kγ.

For m = 0, we get an Eisenstein series. For m ≥ 1,
PN,k,m ∈ Sk(N), and together they span.

Key fact (Petersson):

f ∈ Sk(N) =⇒ 〈f ,PN,k,m〉
.

= [qm]f (τ).
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Trio of expansions

The above describes the parabolic theory.

Petersson described two other important types of expansions:

Hyperbolic (w.r.t pairs of real quadratic points) and

Elliptic (w.r.t. points in H).

Main takeaway: Though less studied, these give other info,
and contain interesting arithmetic also!

Sometimes they are necessary, e.g., in non-congruence
subgroups when there are no cusps, Voight and Willis have
studied elliptic expansions.

They can still have “nice” congruences, for example as studied
by Atkin and Swinnerton-Dyer/Winnie Li and Ling Long.
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Hyperbolic expansions

γ ∈ SL2(Z) is hyperbolic if |tr(γ)| > 2.

Fixed points: pairs η = {η1, η2} of real quadratic points.

General reference on expansions: see Imamoglu and
O’Sullivan.

The Poincaré series in this case give very important functions.
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Hyperbolic Poincaré series

Zagier’s Fk,D functions:

Fk,D(τ) :=
∑

Q∈QD

Q(τ, 1)−k ∈ S2k .

Kohnen: ∑
D

Fk,D(τ)e(Dz) ≈
∑
m

Pk+ 1
2
,m(z)e(mτ).

This is the kernel of the Shimura/Shintani lift.

Kohnen/Kohnen-Zagier: Integrating against gives L-values.

Katok: These are also generators of all modular forms.

Leads to locally harmonic Maass forms
(Bringmann-Kane-Kohnen), applications to L-values and
Tunnell’s Theorem (Ehlen-Guerzhoy-Kane-R.).
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Zagier’s Fk,D functions:

Fk,D(τ) :=
∑

Q∈QD

Q(τ, 1)−k ∈ S2k .

Kohnen: ∑
D

Fk,D(τ)e(Dz) ≈
∑
m

Pk+ 1
2
,m(z)e(mτ).

This is the kernel of the Shimura/Shintani lift.

Kohnen/Kohnen-Zagier: Integrating against gives L-values.

Katok: These are also generators of all modular forms.

Leads to locally harmonic Maass forms
(Bringmann-Kane-Kohnen), applications to L-values and
Tunnell’s Theorem (Ehlen-Guerzhoy-Kane-R.).



Periodicities for Taylor coefficients of half-integral weight modular forms

Hyperbolic Poincaré series
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Elliptic expansions

Consider Taylor expansions about τ0 ∈ H.

The values are very interesting.

Gross-Zagier: exact prime factorizations of norms of
differences of j(τ0), τ0 a CM point.

Values of j at CM points also generate Hilbert class fields of
imaginary quadratic fields (Hilbert’s 12th/Kronecker’s
Jugendtraum)

Zagier: Traces of singular moduli



Periodicities for Taylor coefficients of half-integral weight modular forms

Elliptic expansions

Consider Taylor expansions about τ0 ∈ H.

The values are very interesting.

Gross-Zagier: exact prime factorizations of norms of
differences of j(τ0), τ0 a CM point.

Values of j at CM points also generate Hilbert class fields of
imaginary quadratic fields (Hilbert’s 12th/Kronecker’s
Jugendtraum)

Zagier: Traces of singular moduli



Periodicities for Taylor coefficients of half-integral weight modular forms

Elliptic expansions

Consider Taylor expansions about τ0 ∈ H.

The values are very interesting.

Gross-Zagier: exact prime factorizations of norms of
differences of j(τ0), τ0 a CM point.

Values of j at CM points also generate Hilbert class fields of
imaginary quadratic fields (Hilbert’s 12th/Kronecker’s
Jugendtraum)

Zagier: Traces of singular moduli



Periodicities for Taylor coefficients of half-integral weight modular forms

Elliptic expansions

Consider Taylor expansions about τ0 ∈ H.

The values are very interesting.

Gross-Zagier: exact prime factorizations of norms of
differences of j(τ0), τ0 a CM point.

Values of j at CM points also generate Hilbert class fields of
imaginary quadratic fields (Hilbert’s 12th/Kronecker’s
Jugendtraum)

Zagier: Traces of singular moduli



Periodicities for Taylor coefficients of half-integral weight modular forms

Elliptic expansions

Consider Taylor expansions about τ0 ∈ H.

The values are very interesting.

Gross-Zagier: exact prime factorizations of norms of
differences of j(τ0), τ0 a CM point.

Values of j at CM points also generate Hilbert class fields of
imaginary quadratic fields (Hilbert’s 12th/Kronecker’s
Jugendtraum)

Zagier: Traces of singular moduli



Periodicities for Taylor coefficients of half-integral weight modular forms

Normalizing elliptic expansions

For general weights, values at CM points are no longer
algebraic. Following Zagier, we can make them nice.

Naive Taylor expansion:

f (τ) =
∑
n≥0

(
dnf

dτn

) ∣∣
τ0

(τ − τ0)n

n!
.

Not ideal as only converges in small disk.
Better: Cayley transform:

τ 7→ w :=
τ − τ0

τ − τ0
.

This leads to the expansion

(1−w)−k f

(
τ0 − τ0w

1− w

)
=
∑
n≥0

∂nf (τ0)
(4πy0w)n

n!
(|w | < 1),

where ∂k = ∂ := 1
2πi

d
dτ −

k
4πy .
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Interpreting elliptic expansion coefficients

The coefficients in the last expansion are thus values of
non-holomorphic modular forms.

Special cases: Rodriguez-Villegas/Zagier: Some Taylor
coefficients of Eisenstein series are Hecke L-values.

 Computable criterion to check if p ≡ 1 (mod 9) is a sum
of two rational cubes.

Other than Eisenstein series, one of the “nicest” next
examples is Jacobi’s theta function ϑ3(τ) :=

∑
n∈Z q

n2
.
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Coefficients of ϑ3

Romik studied the coefficients of ϑ3 about τ0 = i .

He expressed these in terms of special functions and classical
elliptic functions, leading to explicit recursion formulas.

Renormalizing gives an integer sequence:

(1− w)−
1
2ϑ3

(
i + wi

1− w

)
=: ϑ3(i)

∑
n≥0

d(n)

(2n)!
(Φw)2n.

First few values of d(n) are 1, 1,−2, 51, 849,−26199, . . . .
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Romik’s Conjecture

Conjecture (Romik)

Let p be an odd prime. Then:

1 p ≡ 3 (mod 4) =⇒ d ≡ 0 (mod p) for n� 0.

2 p ≡ 1 (mod 4) =⇒ {d(n) (mod p)}∞n=1 is periodic.

Theorem (Scherer)

Part 1 is true. Moreover, d(n) ≡ (−1)n+1 (mod 5).

The recursions used in Scherer’s proof don’t prove (2).

Question

Is there a natural framework?
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Our results

Theorem (Guerzhoy-Mertens-R.)

Let f ∈ Mk− 1
2
(Γ1(4N)) have algebraic integral Fourier coefficients.

Suppose p > 3 is split in Q(τ0) for a CM point τ0.

The function
Φk := Ek/ϑ

2k
3 of weight 0, level 4 has algebraic values at CM

points. Suppose Φp−1(τ0) is a p-adic unit. Then ∃Ω ∈ C×
(depending only on τ0, p) such that for all n1, n2 > A,

n1 ≡ n2 (mod (p − 1)pA) =⇒

∂n1f (τ0)/Ω2k+4n1−1 ≡ ∂n2f (τ0)/Ω2k+4n2−1 (mod pA+1).

Corollary

The conjecture of Romik is true.
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Remarks

The condition that Φp−1(τ0) is a p-adic unit is probably not
necessary, but makes things cleaner.

The existence of a universal choice of Ω is a key point to
proving periodicity rather than only pre-periodicity.

Larson and Smith proved an analogue in the inert prime
integer weight SL2(Z) case.

It seems a more general version is also true in the inert prime
case, but new techniques are required to cover higher levels.

Recently, Wakhare and Wakhare-Vignat have also studied
generalizations and refinements of Romik’s conjecture.
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Ideas of the proof

Kaneko-Zagier: Connection between nearly holomorphic and
quasimodular forms.

Extensions of this to arbitrary weight are needed: Use work of
Zemel.

In general, we get an isomorphism

⊕kM̃k(Γ) ∼= ⊕kM
∗
k (Γ),

with D := 1
2πi

d
dτ acting on quasimodular forms, ∂ on almost

holomorphic forms.
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Work of Katz and Damerell

Main idea comes from Katz, but modifications are needed.

Mantra: (p-adically close) modular forms have (p-adically
close) values q-expansion principle.

To pass to integral weight, we multiply by ϑ3.

Then work of Damerell and Katz on algebraicity of values
must be interpreted correctly.
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Conclusions

Hyperbolic and elliptic expansions of modular forms also
contain much interesting arithmetic, as q-series do.

Romik made conjectures on the arithmetic of certain elliptic
coefficients; namely, on congruences.

Guerzhoy, Mertens, and R. have proven this conjecture and
placed it in a broader framework.

Much further arithmetic must remain to be explored.

Thank you!
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