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There are five elementary
arithmetical operations: addition,
subtraction, multiplication, division,
and... modular forms.

Martin Eichler

We now return to modular forms. We will see that these will allow us to study ranks
of elliptic curves in families of quadratic twists, like En.

We have already seen a few examples of modular forms, implicitly. For example, ℘Λ(z)
gives modular forms in two ways, where Λ = 〈1, τ〉, τ ∈ H:

(1) The Taylor coefficients Gk(Λ).
(2) Specialization to torsion points: ℘Λ(a+ bτ), where a, b ∈ Q.

Such two-variable functions which encode these two infinite families of modular forms
like this are described by the framework of Jacobi forms, which can return to later.

Now, we will build up the theory of modular forms. We start with a rigorous definition.

Definition. A meromorphic modular form of weight k ∈ Z is a meromorphic func-
tion f : H → C such that

(1) f(γτ) = (cτ + d)kf(τ) for all γ ∈ SL2(Z) with γ = ( a bc d ).
(2) f is “meromorphic at∞”. This means the following. Recall that ( 1 1

0 1 ) ∈ SL2(Z)
implies that f(τ + 1) = f(τ) and that this plus meromorphicity implies f has a
Fourier expansion

f(τ) =
∑
n∈Z

anq
n.

This is an expansion around ∞; recall that q → 0 as τ → i∞ (e2πi(i∞) = 0).
Meromorphic at∞means that an = 0 for n�∞. That is, the Fourier expansion
is really

f(τ) =
∑

n�−∞

anq
n =

∞∑
n=nm

anq
n

for some nm ∈ Z. Alternatively, we’ll learn to think of these conditions near ∞
as growth rate properties. So we could also require that

f(it) = O(eCt)
1
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for some C > 0 where t ∈ R tends to ∞. But we have something even better
than that; the beginning of the expansion with non-positive q powers is called
the principal part, and once you subtract that you have exponential decay.

We now discuss some of the key properties. of modular forms.

Properties/Notation. (1) The set of all modular forms of weight k is a vector
space. We’ll denote this by Mmero

k (SL2(Z)) = Mmero
k .

(2) If f is holomorphic on H, then we say f is weakly holomorphic. The space
of such functions is denoted M !

k.
(3) If f is holomorphic on H and at ∞ (meaning f(τ) =

∑
n≥0 anq

n), then f is a
holomorphic modular form. We also call holomorphic modular forms simply
“modular forms” and we denote the space of them by Mk.

(4) If f ∈ Mk and we further have a0 = 0, that is, f(τ) =
∑

n≥1 a1q
n, then we say

f is a cusp form. The space of cusp forms is denoted by Sk (for the German
“Spitze”).

(5) Thus, we have the following containments:

Sk ⊆Mk ⊆M !
k ⊆Mmero

k .

(6) Modular forms (N.B.: False for more general groups than SL2(Z)) of odd weight
are 0. We can easily see this by considering the matrix

( −1 0
0 −1

)
. The modularity

relation at this matrix implies

f(τ) = (−1)kf(τ) = −f(τ)

for all τ ∈ H, and so f(τ) ≡ 0.
(7) Here is what is special about the factor (cτ + d)k. If k = 0, then the function is

invariant under the Möbius transformations, which is natural. Now differentiate

d

dτ
(γ · τ) =

d

dτ

(
aτ + b

cτ + d

)
= (cτ + d)−2

(we have used that the determinant is 1!). Thus, modularity at γ is the same as(
dγτ

dτ

) k
2

f(γτ) = f(τ)

which is the same as saying that f(τ)(dτ)
k
2 is invariant. In turn, this is the same

as giving a k/2 differential form on SL2(Z)\H.
(8) Earlier, we claimed that SL2(Z) 	 H. Here is a main part of the proof, which is

a frequently useful calculation:

Im(γτ) = Im

(
aτ + b

cτ + d

)
= Im

(
(aτ + b)(cτ̄ + d)

|cτ + d|2

)
=

Im(adτ + bcτ̄)

|cτ + d|2
=

(ad− bc)v
|cτ + d|2

=
v

|cτ + d|2
> 0.
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Two special elements of SL2(Z) are

S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
.

These in fact generate SL2(Z).

Lemma. We have SL2(Z) = Γ = 〈S, T 〉.

Proof. Let G = 〈S, T 〉 ≤ Γ. The effect of multiplication of powers of S, T is given as
follows.

S

(
a b
c d

)
=

(
−c −d
a b

)
, T n

(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
.

Note that S2 = −I has trivial Möbius transformation action, so we don’t really take
powers of it. But since −I is in G, we can multiply matrices by a sign. Now let
γ = ( a bc d ) ∈ Γ. Suppose c 6= 0. If |a| > |c|, then do a Euclidean division a = cq + r with
0 ≤ r < |c|. Then

T−qγ =

(
a− qc ∗
c ∗

)
=

(
r ∗
c ∗

)
.

Now the upper left entry is ≤ the (absolute value) of the lower left entry. Swap these
two (with a sign) by multiplying by S. If the lower left entry is non-zero, find another
power of T to multiply by to make the lower left value smaller. Eventually, you get a
matrix of the form ( ∗ ∗0 ∗ ). Since its in Γ, it has to be in the form(

±1 m
0 ±1

)
= ±Tm ∈ G.

Thus, Γ ≤ G, and we are done. �

Example 1. This is a constructive proof. A cool way to interpret this is via continued
fractions. In fact, continued fractions are determined by performing the Euclidean
algorithm. For example, say we want to write the matrix ( 17 29

7 12 ) as T ∗ST ∗S . . .. How
do we find the correct powers? Well, we look at the left column, and we write out the
quotient as a continued fraction:

17

7
= 3− 1

2− 1
4

.

This corresponds to the representation

T 3ST 2ST 4S =

(
17 −5
7 −2

)
.

This has the right first column! To find the correct second column, solve(
17 29
7 12

)
=

(
17 −5
7 −2

)
M.
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This yields

M =

(
1 2
0 1

)
= T 2.

Thus, we have (
17 29
7 12

)
= T 3ST 2ST 4ST 2.


