MODULAR FORMS LECTURE 9: MODULAR FORMS: THE BASICS

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

There are five elementary arithmetical operations: addition, subtraction, multiplication, division, and... modular forms.

Martin Eichler

We now return to modular forms. We will see that these will allow us to study ranks of elliptic curves in families of quadratic twists, like E_{n}.

We have already seen a few examples of modular forms, implicitly. For example, $\wp_{\Lambda}(z)$ gives modular forms in two ways, where $\Lambda=\langle 1, \tau\rangle, \tau \in \mathbb{H}$:
(1) The Taylor coefficients $G_{k}(\Lambda)$.
(2) Specialization to torsion points: $\wp_{\Lambda}(a+b \tau)$, where $a, b \in \mathbb{Q}$.

Such two-variable functions which encode these two infinite families of modular forms like this are described by the framework of Jacobi forms, which can return to later.

Now, we will build up the theory of modular forms. We start with a rigorous definition.
Definition. A meromorphic modular form of weight $k \in \mathbb{Z}$ is a meromorphic function $f: H \rightarrow \mathbb{C}$ such that
(1) $f(\gamma \tau)=(c \tau+d)^{k} f(\tau)$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ with $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(2) f is "meromorphic at ∞ ". This means the following. Recall that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ implies that $f(\tau+1)=f(\tau)$ and that this plus meromorphicity implies f has a Fourier expansion

$$
f(\tau)=\sum_{n \in \mathbb{Z}} a_{n} q^{n}
$$

This is an expansion around ∞; recall that $q \rightarrow 0$ as $\tau \rightarrow i \infty\left(e^{2 \pi i(i \infty)}=0\right)$. Meromorphic at ∞ means that $a_{n}=0$ for $n \ll \infty$. That is, the Fourier expansion is really

$$
f(\tau)=\sum_{n \gg-\infty} a_{n} q^{n}=\sum_{n=n_{m}}^{\infty} a_{n} q^{n}
$$

for some $n_{m} \in \mathbb{Z}$. Alternatively, we'll learn to think of these conditions near ∞ as growth rate properties. So we could also require that

$$
f(i t)=O\left(e^{C t}\right)
$$

for some $C>0$ where $t \in \mathbb{R}$ tends to ∞. But we have something even better than that; the beginning of the expansion with non-positive q powers is called the principal part, and once you subtract that you have exponential decay.

We now discuss some of the key properties. of modular forms.
Properties/Notation. (1) The set of all modular forms of weight k is a vector space. We'll denote this by $M_{k}^{\text {mero }}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=M_{k}^{\text {mero }}$.
(2) If f is holomorphic on \mathbb{H}, then we say f is weakly holomorphic. The space of such functions is denoted $M_{k}^{!}$.
(3) If f is holomorphic on \mathbb{H} and at ∞ (meaning $f(\tau)=\sum_{n \geq 0} a_{n} q^{n}$), then f is a holomorphic modular form. We also call holomorphic modular forms simply "modular forms" and we denote the space of them by M_{k}.
(4) If $f \in M_{k}$ and we further have $a_{0}=0$, that is, $f(\tau)=\sum_{n \geq 1} a_{1} q^{n}$, then we say f is a cusp form. The space of cusp forms is denoted by S_{k} (for the German "Spitze").
(5) Thus, we have the following containments:

$$
S_{k} \subseteq M_{k} \subseteq M_{k}^{!} \subseteq M_{k}^{\text {mero }}
$$

(6) Modular forms (N.B.: False for more general groups than $\mathrm{SL}_{2}(\mathbb{Z})$) of odd weight are 0 . We can easily see this by considering the matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. The modularity relation at this matrix implies

$$
f(\tau)=(-1)^{k} f(\tau)=-f(\tau)
$$

for all $\tau \in \mathbb{H}$, and so $f(\tau) \equiv 0$.
(7) Here is what is special about the factor $(c \tau+d)^{k}$. If $k=0$, then the function is invariant under the Möbius transformations, which is natural. Now differentiate

$$
\frac{d}{d \tau}(\gamma \cdot \tau)=\frac{d}{d \tau}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{-2}
$$

(we have used that the determinant is 1!). Thus, modularity at γ is the same as

$$
\left(\frac{d \gamma \tau}{d \tau}\right)^{\frac{k}{2}} f(\gamma \tau)=f(\tau)
$$

which is the same as saying that $f(\tau)(d \tau)^{\frac{k}{2}}$ is invariant. In turn, this is the same as giving a $k / 2$ differential form on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$.
(8) Earlier, we claimed that $\mathrm{SL}_{2}(\mathbb{Z}) \circlearrowleft \mathbb{H}$. Here is a main part of the proof, which is a frequently useful calculation:

$$
\operatorname{Im}(\gamma \tau)=\operatorname{Im}\left(\frac{a \tau+b}{c \tau+d}\right)=\operatorname{Im}\left(\frac{(a \tau+b)(c \bar{\tau}+d)}{|c \tau+d|^{2}}\right)=\frac{\operatorname{Im}(a d \tau+b c \bar{\tau})}{|c \tau+d|^{2}}=\frac{(a d-b c) v}{|c \tau+d|^{2}}=\frac{v}{|c \tau+d|^{2}}>0 .
$$

Two special elements of $\mathrm{SL}_{2}(\mathbb{Z})$ are

$$
S:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

These in fact generate $\mathrm{SL}_{2}(\mathbb{Z})$.
Lemma. We have $\mathrm{SL}_{2}(\mathbb{Z})=\Gamma=\langle S, T\rangle$.
Proof. Let $G=\langle S, T\rangle \leq \Gamma$. The effect of multiplication of powers of S, T is given as follows.

$$
S\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-c & -d \\
a & b
\end{array}\right), \quad T^{n}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+n c & b+n d \\
c & d
\end{array}\right) .
$$

Note that $S^{2}=-I$ has trivial Möbius transformation action, so we don't really take powers of it. But since $-I$ is in G, we can multiply matrices by a sign. Now let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Suppose $c \neq 0$. If $|a|>|c|$, then do a Euclidean division $a=c q+r$ with $0 \leq r<|c|$. Then

$$
T^{-q} \gamma=\left(\begin{array}{cc}
a-q c & * \\
c & *
\end{array}\right)=\left(\begin{array}{ll}
r & * \\
c & *
\end{array}\right) .
$$

Now the upper left entry is \leq the (absolute value) of the lower left entry. Swap these two (with a sign) by multiplying by S. If the lower left entry is non-zero, find another power of T to multiply by to make the lower left value smaller. Eventually, you get a matrix of the form $\left(\begin{array}{c}* \\ 0 \\ *\end{array}\right)$. Since its in Γ, it has to be in the form

$$
\left(\begin{array}{cc}
\pm 1 & m \\
0 & \pm 1
\end{array}\right)= \pm T^{m} \in G .
$$

Thus, $\Gamma \leq G$, and we are done.
Example 1. This is a constructive proof. A cool way to interpret this is via continued fractions. In fact, continued fractions are determined by performing the Euclidean algorithm. For example, say we want to write the matrix $\left(\begin{array}{c}17 \\ 7 \\ 12\end{array}\right)$ as $T^{*} S T^{*} S \ldots$. How do we find the correct powers? Well, we look at the left column, and we write out the quotient as a continued fraction:

$$
\frac{17}{7}=3-\frac{1}{2-\frac{1}{4}}
$$

This corresponds to the representation

$$
T^{3} S T^{2} S T^{4} S=\left(\begin{array}{cc}
17 & -5 \\
7 & -2
\end{array}\right)
$$

This has the right first column! To find the correct second column, solve

$$
\left(\begin{array}{cc}
17 & 29 \\
7 & 12
\end{array}\right)=\left(\begin{array}{cc}
17 & -5 \\
7 & -2
\end{array}\right) M
$$

This yields

$$
M=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=T^{2}
$$

Thus, we have

$$
\left(\begin{array}{cc}
17 & 29 \\
7 & 12
\end{array}\right)=T^{3} S T^{2} S T^{4} S T^{2}
$$

