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Dirichlet allein, nicht ich, nicht
Cauchy, nicht Gauß, weiß, was ein
vollkommen strenger Beweis ist,
sondern wir lernen es erst von ihm.
Wenn Gauß sagt, er habe etwas
bewiesen, so ist es mir sehr
wahrscheinlich, wenn Cauchy es sagt,
ist ebensoviel pro als contra zu
wetten, wenn Dirichlet es sagt, ist es
gewiß; ich lasse mich auf diese
Delikatessen lieber gar nicht ein.

Jacobi, writing to von Humboldt

Last time, we defined the elliptic curves En : y2 = x3 − n2x. We have seen that the
existence of rational points on En with y 6= 0 controls whether n is congruent. We also
say that any elliptic curve group splits up as a torsion part and a power of Z. Finally,
we have seen that there are 4 two-torsion points on En, 3 of which have y = 0. It turns
out that these are all of the torsion points.

Theorem. For any n, we have Etors
n
∼= Z/2Z× Z/2Z.

Corollary. n is congruent if and only if En(Q) has a point of infinite order. That is,
iff En(Q) has rank r ≥ 1.

Corollary. If n is congruent, then there are infinitely many rational right triangles with
area n.

Remark. Assuming BSD, we’ll see tests for when the rank is positive via modular forms
later.

Proof. We have already seen that there are 4 torsion points. Since the three points on
the x-axis have order 2, these form a subgroup isomorphic to Z/2Z × Z/2Z. We need
to show that there are no other torsion points.

Goal: Construct a group homomorphism

Etors
n (Q)→ En(Fp)

which is “usually” injective. For such p, by Lagrange’s Theorem we have #Etors
n (Q)

∣∣ #En(Fp).
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Lemma. If q = pr, p - 2n, q ≡ 3 (mod 4), then

#En(Fq) = q + 1.

Proof. We already have 4 points of order dividing 2: ∞, (0, 0), and (±n, 0). Now count
those points (x, y) with x 6= 0,±n. Arrange the q − 3 remaining x’s into pairs {x,−x}.
Then f(x) = x3 − n2x is an odd function, and since −1 is not a square in Fq (this is
a basic elementary number theory fact we’ll assume which holds since q ≡ 3 (mod 4)),
exactly one of the f(x), f(−x) is a square in Fq. (Note: In F×

q , the squares are a
subgroup of order 2, so a product of two squares is a square, etc). This gives (q − 3)/2
pairs, or q − 3 points on the curve, plus the original 4 points of order 2, for a total of
q + 1 points. (Note; We’ll return to the case q ≡ 1 (mod 4) later as we’ll need it for
other purposes). �

Now if #Etors
n (Q)

∣∣ #En(Fp) for most p, then we’ll have for most p ≡ 3 (mod 4) that
#Etors

n (Q)|p + 1. If for instance, the size of the torsion group was 12, this would mean
that for most primes p ≡ 3 (mod 4), we have p = 12k− 1 =⇒ p ≡ 11 (mod 12), which
is false.

We now need to switch to projective coordinates. We consider a map from

P2
Q → P2

Fp
.

For this, we can pick for each point in the codomain representative homogenous coor-
dinates P = (x, y, z) ∈ P2

Q with relatively prime integer coordinates (by clearing out
denominators and dividing out common factors), and this is unique up to a factor of ±1.
The map then sends each of x, y, z to their reductions mod p in Fp. As x, y, z are rela-
tively prime, p can’t divide all three of them, so that we don’t get (0, 0, 0) as disallowed
in projective coordinates. Denote this new point P = (x̄, ȳ, z̄) ∈ P2

Fp
. For example, last

time we considered the point (25/4, 35/8, 1) on E6 and take the prime p = 7, then we
rescale this to (50, 35, 8) and then reduce mod 7 to get (1, 0, 1) ∈ P2

F7
. The equation

y2 = x3 − 36x mod 7 becomes y2 = x3 − x, and so (1, 0) is a point on the curve mod 7.
In general, P ∈ En(Q) =⇒ P ∈ En(Fp) (reduce the equations defining the curve

mod p). Writing the addition law on an elliptic curve algebraically shows that P1 + P2 =
P 1 + P 2, i.e., that this gives a homomorphism

En(Q)→ En(Fp)

for any prime p - 2n (this is to avoid primes where the discriminant 64n6 ≡ 0 (mod p)).
That is, if we avoid finitely many bad places, this is a homomorphism of elliptic curves.

To study when this map is injective, we give a useful criterion for the reduction of two
points to be equal.

Lemma (Injectivity Lemma). We have that

P 1 = P 2 ⇐⇒ P1 × P2 is divisible by p,

where the × on the right hand side denotes cross product in R3.
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Proof. Suppose that p
∣∣ P1 × P2 = (y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1).

Case 1: If p|x1, then p|x2z1, x2y1, and so p|x2 (otherwise, p|x1, y1, z1, which is a
contradiction). Now either y1 or z1 is not divisible by p, WLOG say y1 isn’t.By rescaling
in projective coordinates we have

P 2 = (0, y2, z2) = (0, y1y2, y1z2) = (0, y1y2, y2z1) = (0, y1, z1),

where we used the cross product relation p|(y1z2 − y2z1).
Case 2: If p - x1, then by rescaling in projective coordinates we find

P 2 = (x1x2, x1y2, x1z2) = (x1x2, x2y1, x2z1) = (x1, y1, z1) = P 1.

Conversely, if P 1 = P 2, then WLOG assume p - x1 (since it doesn’t divide some
component). Since P 1 = P 2, we deduce p - x2. Thus,

(x1x2, x1y2, x1z2) = P 2 = P 1 = (x2x1, x2y1, x2z1).

Since the first coordinates are equal, these two points can be equal if and only if the
second and third components are also equal (no rescaling allowed). This happens iff

p
∣∣ x1y2 − x2y1, x1z2 − x2z1.

Finally, we need to show p
∣∣ (y1z2 − y2z1). If p divides both y1 and z1, this is trivial.

Otherwise, repeat the argument with x1, x2 replaces by y’s or z’s. �

Now we are ready to prove our main result. Suppose that En(Q) has a torsion point of
order greater than 2. Then either it has a point of odd order or the subgroup of points of
order dividing 4 has either 8 or 16 elements. Thus, there would be a non-trivial subgroup
of Etors

n (Q) or order 8 or with an odd number of elements. No matter what, there is a
subgroup of order m where m = 8 or m is an odd number bigger than 1 . Call the points
in this subgroup S = {P1, . . . Pm}, where Pi = (xi, yi, zi). For each pair of i, j, the Pi, Pj

are distinct in projective coordinates. Thus, as R3 vectors they aren’t proportional and
so Pi × Pj 6= 0. Let nij be the gcd of the coordinates of Pi × Pj. By the above lemma,

P i = P j ⇐⇒ p|nij.

Thus, if p is a point of good reduction (it doesn’t divide the discriminant of E(Q) so
that E(Fp) is an elliptic curve), bigger than all the nij, we have an injection

S ↪→ En(Fp).

So for all but finitely many primes p ≡ 3 (mod 4), we have

m
∣∣ #En(Fp) = p + 1 =⇒ p ≡ −1 (mod m).

This is (case-by-caser) a contradiction to Dirichlet’s Theorem on primes in arith-
metic progressions! If m = 8, this implies that there are only finitely many primes
of the form 8k + 3. If m is odd, then there are either finitely many primes of the form
4mk + 3 (if 3 - m) or 12k + 7 (if 3|m). �
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In order to see how to test whether there is a point of infinite order on an elliptic
curve, we will have to learn more about modular forms. Next time, we will begin the
study of modular forms from scratch.


