MODULAR FORMS LECTURE 8: TORSION POINTS ON THE CONGRUENT NUMBER ELLIPTIC CURVES

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

> Dirichlet allein, nicht ich, nicht Cauchy, nicht Gauß, weiß, was ein vollkommen strenger Beweis ist, sondern wir lernen es erst von ihm. Wenn Gauß sagt, er habe etwas bewiesen, so ist es mir sehr wahrscheinlich, wenn Cauchy es sagt, ist ebensoviel pro als contra zu wetten, wenn Dirichlet es sagt, ist es gewiß; ich lasse mich auf diese Delikatessen lieber gar nicht ein.

Jacobi, writing to von Humboldt
Last time, we defined the elliptic curves $E_{n}: y^{2}=x^{3}-n^{2} x$. We have seen that the existence of rational points on E_{n} with $y \neq 0$ controls whether n is congruent. We also say that any elliptic curve group splits up as a torsion part and a power of \mathbb{Z}. Finally, we have seen that there are 4 two-torsion points on $E_{n}, 3$ of which have $y=0$. It turns out that these are all of the torsion points.
Theorem. For any n, we have $E_{n}^{\text {tors }} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Corollary. n is congruent if and only if $E_{n}(\mathbb{Q})$ has a point of infinite order. That is, iff $E_{n}(\mathbb{Q})$ has rank $r \geq 1$.
Corollary. If n is congruent, then there are infinitely many rational right triangles with area n.

Remark. Assuming BSD, we'll see tests for when the rank is positive via modular forms later.

Proof. We have already seen that there are 4 torsion points. Since the three points on the x-axis have order 2 , these form a subgroup isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We need to show that there are no other torsion points.

Goal: Construct a group homomorphism

$$
E_{n}^{\text {tors }}(\mathbb{Q}) \rightarrow E_{n}\left(\mathbb{F}_{p}\right)
$$

which is "usually" injective. For such p, by Lagrange's Theorem we have $\# E_{n}^{\text {tors }}(\mathbb{Q}) \mid \# E_{n}\left(\mathbb{F}_{p}\right)$.

Lemma. If $q=p^{r}, p \nmid 2 n, q \equiv 3(\bmod 4)$, then

$$
\# E_{n}\left(\mathbb{F}_{q}\right)=q+1
$$

Proof. We already have 4 points of order dividing 2 : $\infty,(0,0)$, and $(\pm n, 0)$. Now count those points (x, y) with $x \neq 0, \pm n$. Arrange the $q-3$ remaining x 's into pairs $\{x,-x\}$. Then $f(x)=x^{3}-n^{2} x$ is an odd function, and since -1 is not a square in \mathbb{F}_{q} (this is a basic elementary number theory fact we'll assume which holds since $q \equiv 3(\bmod 4)$), exactly one of the $f(x), f(-x)$ is a square in \mathbb{F}_{q}. (Note: In \mathbb{F}_{q}^{\times}, the squares are a subgroup of order 2 , so a product of two squares is a square, etc). This gives $(q-3) / 2$ pairs, or $q-3$ points on the curve, plus the original 4 points of order 2, for a total of $q+1$ points. (Note; We'll return to the case $q \equiv 1(\bmod 4)$ later as we'll need it for other purposes).

Now if $\# E_{n}^{\text {tors }}(\mathbb{Q}) \mid \# E_{n}\left(\mathbb{F}_{p}\right)$ for most p, then we'll have for most $p \equiv 3(\bmod 4)$ that $\# E_{n}^{\text {tors }}(\mathbb{Q}) \mid p+1$. If for instance, the size of the torsion group was 12 , this would mean that for most primes $p \equiv 3(\bmod 4)$, we have $p=12 k-1 \Longrightarrow p \equiv 11(\bmod 12)$, which is false.

We now need to switch to projective coordinates. We consider a map from

$$
\mathbb{P}_{\mathbb{Q}}^{2} \rightarrow \mathbb{P}_{\mathbb{F}_{p}}^{2}
$$

For this, we can pick for each point in the codomain representative homogenous coordinates $P=(x, y, z) \in \mathbb{P}_{\mathbb{Q}}^{2}$ with relatively prime integer coordinates (by clearing out denominators and dividing out common factors), and this is unique up to a factor of ± 1. The map then sends each of x, y, z to their reductions $\bmod p$ in \mathbb{F}_{p}. As x, y, z are relatively prime, p can't divide all three of them, so that we don't get $(0,0,0)$ as disallowed in projective coordinates. Denote this new point $\bar{P}=(\bar{x}, \bar{y}, \bar{z}) \in \mathbb{P}_{\mathbb{F}_{p}}^{2}$. For example, last time we considered the point $(25 / 4,35 / 8,1)$ on E_{6} and take the prime $p=7$, then we rescale this to $(50,35,8)$ and then reduce $\bmod 7$ to get $(1,0,1) \in \mathbb{P}_{\mathbb{F}_{7}}^{2}$. The equation $y^{2}=x^{3}-36 x \bmod 7$ becomes $y^{2}=x^{3}-x$, and so $(1,0)$ is a point on the curve mod 7 .

In general, $P \in E_{n}(\mathbb{Q}) \Longrightarrow \bar{P} \in E_{n}\left(\mathbb{F}_{p}\right)$ (reduce the equations defining the curve $\bmod p)$. Writing the addition law on an elliptic curve algebraically shows that $\overline{P_{1}+P_{2}}=$ $\bar{P}_{1}+\bar{P}_{2}$, i.e., that this gives a homomorphism

$$
E_{n}(\mathbb{Q}) \rightarrow E_{n}\left(\mathbb{F}_{p}\right)
$$

for any prime $p \nmid 2 n$ (this is to avoid primes where the discriminant $64 n^{6} \equiv 0(\bmod p)$). That is, if we avoid finitely many bad places, this is a homomorphism of elliptic curves.

To study when this map is injective, we give a useful criterion for the reduction of two points to be equal.

Lemma (Injectivity Lemma). We have that

$$
\bar{P}_{1}=\bar{P}_{2} \Longleftrightarrow P_{1} \times P_{2} \text { is divisible by } p,
$$

where the \times on the right hand side denotes cross product in \mathbb{R}^{3}.

Proof. Suppose that $p \mid P_{1} \times P_{2}=\left(y_{1} z_{2}-y_{2} z_{1}, x_{2} z_{1}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right)$.
Case 1: If $p \mid x_{1}$, then $p \mid x_{2} z_{1}, x_{2} y_{1}$, and so $p \mid x_{2}$ (otherwise, $p \mid x_{1}, y_{1}, z_{1}$, which is a contradiction). Now either y_{1} or z_{1} is not divisible by p, WLOG say y_{1} isn't.By rescaling in projective coordinates we have

$$
\bar{P}_{2}=\left(0, \bar{y}_{2}, \bar{z}_{2}\right)=\left(0, \bar{y}_{1} \bar{y}_{2}, \bar{y}_{1} \bar{z}_{2}\right)=\left(0, \bar{y}_{1} \bar{y}_{2}, \bar{y}_{2} \bar{z}_{1}\right)=\left(0, \bar{y}_{1}, \bar{z}_{1}\right),
$$

where we used the cross product relation $p \mid\left(y_{1} z_{2}-y_{2} z_{1}\right)$.
Case 2: If $p \nmid x_{1}$, then by rescaling in projective coordinates we find

$$
\bar{P}_{2}=\left(\bar{x}_{1} \bar{x}_{2}, \bar{x}_{1} \bar{y}_{2}, \bar{x}_{1} \bar{z}_{2}\right)=\left(\bar{x}_{1} x_{2}, \bar{x}_{2} \bar{y}_{1}, \bar{x}_{2} \bar{z}_{1}\right)=\left(\bar{x}_{1}, \bar{y}_{1}, \bar{z}_{1}\right)=\bar{P}_{1} .
$$

Conversely, if $\bar{P}_{1}=\bar{P}_{2}$, then WLOG assume $p \nmid x_{1}$ (since it doesn't divide some component). Since $\bar{P}_{1}=\bar{P}_{2}$, we deduce $p \nmid x_{2}$. Thus,

$$
\left(\bar{x}_{1} \bar{x}_{2}, \bar{x}_{1} \bar{y}_{2}, \bar{x}_{1} \bar{z}_{2}\right)=\bar{P}_{2}=\bar{P}_{1}=\left(\bar{x}_{2} \bar{x}_{1}, \bar{x}_{2} \bar{y}_{1}, \bar{x}_{2} \bar{z}_{1}\right) .
$$

Since the first coordinates are equal, these two points can be equal if and only if the second and third components are also equal (no rescaling allowed). This happens iff

$$
p \mid x_{1} y_{2}-x_{2} y_{1}, x_{1} z_{2}-x_{2} z_{1}
$$

Finally, we need to show $p \mid\left(y_{1} z_{2}-y_{2} z_{1}\right)$. If p divides both y_{1} and z_{1}, this is trivial. Otherwise, repeat the argument with x_{1}, x_{2} replaces by y 's or z 's.

Now we are ready to prove our main result. Suppose that $E_{n}(\mathbb{Q})$ has a torsion point of order greater than 2. Then either it has a point of odd order or the subgroup of points of order dividing 4 has either 8 or 16 elements. Thus, there would be a non-trivial subgroup of $E_{n}^{\text {tors }}(\mathbb{Q})$ or order 8 or with an odd number of elements. No matter what, there is a subgroup of order m where $m=8$ or m is an odd number bigger than 1 . Call the points in this subgroup $S=\left\{P_{1}, \ldots P_{m}\right\}$, where $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)$. For each pair of i, j, the P_{i}, P_{j} are distinct in projective coordinates. Thus, as \mathbb{R}^{3} vectors they aren't proportional and so $P_{i} \times P_{j} \neq 0$. Let $n_{i j}$ be the gcd of the coordinates of $P_{i} \times P_{j}$. By the above lemma,

$$
\bar{P}_{i}=\bar{P}_{j} \Longleftrightarrow p \mid n_{i j} .
$$

Thus, if p is a point of good reduction (it doesn't divide the discriminant of $E(\mathbb{Q})$ so that $E\left(\mathbb{F}_{p}\right)$ is an elliptic curve), bigger than all the $n_{i j}$, we have an injection

$$
S \hookrightarrow E_{n}\left(\mathbb{F}_{p}\right)
$$

So for all but finitely many primes $p \equiv 3(\bmod 4)$, we have

$$
m \mid \# E_{n}\left(\mathbb{F}_{p}\right)=p+1 \Longrightarrow p \equiv-1 \quad(\bmod m)
$$

This is (case-by-caser) a contradiction to Dirichlet's Theorem on primes in arithmetic progressions! If $m=8$, this implies that there are only finitely many primes of the form $8 k+3$. If m is odd, then there are either finitely many primes of the form $4 m k+3$ (if $3 \nmid m$) or $12 k+7$ (if $3 \mid m$).

In order to see how to test whether there is a point of infinite order on an elliptic curve, we will have to learn more about modular forms. Next time, we will begin the study of modular forms from scratch.

