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[On the Bourbaki wedding] The
identity of the celebrating priest “P.
Adic, of the Diophantine Order”
remained unclear. The most likely
suspect was Helmut Hasse, but I
couldn’t place him in Paris on June
3rd, 1939.

LIEVENLB: http:
//www.neverendingbooks.org/

hasse-le-p-adique-de-lordre-des-diophantiens

What’s special about elliptic curves? Last time, we defined elliptic curves (over
some field) as plane curves of the shape y2 = x3+ax+b which are non-singular and have
at least one point. So why this equation? Last time, we also talked about projectivizing
plane curves to get compact Riemann surfaces. In turn, these are classified by the genus.

Fact. The genus of an irreducible non-singular plane curve of degree d (this is the degree
of the defining polynomial) is

g =
1

2
(d− 1)(d− 2).

Roughly speaking, the higher the genus of a curve, the more difficult it is to study. As
the genus grows with the degree, this matches with the intuition that curves defined by
higher degree polynomials are more “complicated”. For d = 3, as in the case of elliptic
curves, the genus is 1

2
(3− 1)(3− 2) = 1.

This kind of result can show that all genus 1 plane projective curves are of this shape.
While one could consider more general cubic polynomials, the point is that you can make
linear changes of variables to get it in the shape y2 = x3 + ax + b. If we want to know
what the points look like over some field, these changes of variables won’t fundamentally
change the situation. As an example, suppose that you have an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

If the characteristic of your field is not 2, then letting Y := y + a1x+a3
2

completes the
square:

Y 2 = x3 +
A

4
x2 +

B

2
x +

C

4
,

1
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where
A = a21 + 4a2, B = a1a3 + 2a4, C = a23 + 4a6.

If the characteristic if the field is not 3, then we can go further by setting X := x+A/12,
giving

Y 2 = X3 − a

48
X − b

864
,

where
a = A2 − 24B, b = −A3 + 36AB − 216C.

When the curve is written in such a form, namely the form y2 = x3 + ax + b, we say
that it is in Weierstraß normal form.

Thus, elliptic curves are basically just nice plane algebraic curves of genus 1. Specifi-
cally, we have the following.

Alternate Definition. An elliptic curve over a field K is a non-singular projective
algebraic curve E over K (meaning it has coefficients in K) which has genus 1, together
with a choice of a K-rational point on E.

Ok, but why is genus 1 interesting? In number theory, we often study Diophantine
problems, which seek to understand the points of curves over Z or Q, or the set of prime
numbers. Many problems which don’t look like they are expressible in terms of solving
polynomials over integers or rationals can actually be recast in such a framework. You
should think of polynomial equations over different fields as follows. Over C, things
are the nicest possible; its an algebraically closed field and the set of points has a nice
geometric structure. Over R, you have Calculus, so things are still pretty nice. In
particular, you have the Intermediate Value Theorem, so solutions exist in between any
pair of positive and negative values.

Over Q, you don’t have calculus, so things aren’t as nice. But at least its a field. Over
Z, things are even harder, and studying solutions of polynomial equations over the set
of prime numbers is usually extremely difficult.

There is a really big idea in number theory, called the Local to Global Principle.
This states that if you’re lucky, you would like to try to build up points on curves over
Q (we call these “global points”) by using points over R and over all of the so-called
p-adic fields Qp for primes p (the so-called “local points”). These fields all contain Q,
so of course a Q point automatically gives a point over all these fields; here we are after
the converse. The p-adic fields are like alternate universes which a number theorist likes
to say are as natural as R; they can be defined in a similar way as a completion of Q
just with a non-standard metric (and in fact these give all other possible completions
of this type). The point is that like R, the p-adic fields have well-defined theories of
Calculus. In fact, things are in ways nicer than over R. As we will discuss, studying
p-adic solutions essentially boils down to knowing the points over finite fields like Fp.
Thus, the hope is that after trading the study of the curve over one field like Q for the
infinite number of “easier” fields R and Qp, not too much information is lost.
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The Local to Global Principle is sometimes literally true. A key example is the
following.

Theorem (Hasse Principle). If C/Q has genus 0, then

C(Q) 6= ∅ ⇐⇒ C(R) 6= ∅, C(Qp) 6= ∅ for all primes p.

The same is true if we replace “non-empty” by “has a non-trivial solution” everywhere.

As mentioned above, whether C(R) is empty is easy to test thanks to the IVT, and
thanks to Hensel’s Lemma, the Qp criterion can be reduced to a finite check (more on
this later). In fact, for genus 0 curves, you can go further. Once you have a point, its easy
to parameterize all rational points on a genus zero curve. For instance, Pythagorean
triples are solutions to a2 + b2 = c2. There is an easy bijection{

(0, 0, 0) 6= (a, b, c) ∈ Z3 : a2 + b2 = c2
}
↔

{
(X, Y ) ∈ Q2 : X2 + Y 2 = 1

}
given by (a, b, c) 7→ (a/c, b/c). As solved in Euclid’s Elements, you can parameterize
all rational points on the unit circle by drawing lines of rational slope through a fixed
point, usually taken to be (−1, 0).

Thus, the problem of determining rational points on genus 0 curves is basically solved.
Elliptic curves are the first case where the Local to Global Principle fails.

Example 1. Selmer’s cubic 3x3 + 4y3 + 5z3 = 0 has no non-zero Q-rational points,
but has a non-zero real point and non-zero points over all Qp. If you’re curious, Keith
Conrad wrote up a nice proof of this here: https://kconrad.math.uconn.edu/blurbs/
gradnumthy/selmerexample.pdf

But it doesn’t fail as badly as in higher genus cases, Curves of genus 2 are much harder.
There is still a lot of structure in the genus 1 case, including a not-so-bad failure to the
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Local to Global Principle. In fact, some measure of the failure of elliptic curves to satisfy
it should be finite (but you’ll be famous if you can prove this!), just as class numbers in
algebraic number theory are finite and measure failure of unique factorization.

Takeaway. Genus 0 curves (think: conic sections) are relatively easy to understand
using some big hammers from modern number theory. Elliptic curves are the next-
easiest case, where many things are still open problems, but where there is still a lot of
explicit structure to exploit.

Another explicit structure elliptic curves have is that they are groups.

Group structure of elliptic curves. Unlike higher genus curves, elliptic curves have
a group structure. Let’s illustrate this over R, so that we can draw pictures. Recall that
elliptic curves have to have a point on them. We can choose any point as the identity of
our group. It is customary to pick the point at infinity. There is a key fact we will need.
Basically, the number of intersection points between two algebraic curves in projective
space should be the product of their degrees. This is not true of course, if the two
curves are the same, or share some component, and one also has to count points with
multiplicity (for example, a line intersects a curve with multiplicity greater than one if
its tangent to it).

Theorem (Bezout’s Theorem). Given two algebraic projective plane curves of degrees d1
and d2, if they don’t share a common component (equivalently, the defining polynomials
are relatively prime), then counting with multiplicity they have exactly d1d2 intersection
points.

For example, we have the following.
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In the case of elliptic curves, we take the identity as the point at∞, which if you solved
the exercise from last time, is the point (0 : 1 : 0). If we take two points P and Q on the
curve, we can draw a straight line between them. This line has degree 1, and the elliptic
curve has degree 3, so they will intersect in 3 points. It might seem like we should then
define P + Q to be this third point, call it R. This is almost right. We actually define
P + Q to be the reflection of R across the x-axis.

Here are a few examples. Note that to double a point, that is, to compute P + P ,
we draw a tangent line at P , to negate a point, we reflect across the x-axis, and that
2-torsion points (where the double of the point is zero) are exactly where there is a
vertical tangent, which is also just where y = 0.
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This group law is very special, and very deep. It also happens to have practical impor-
tance, as its the structure exploited by Elliptic Curve Cryptography (which may be
used by your chip on your credit card, and is becoming increasingly common in internet
security). Although this looks geometric, its secretly completely algebraic. That is, I
could write down equations down for these intersection points, and then these equations
would be valid over any field, regardless of whether I can draw a picture.

Exercise 1. Prove that this procedure defines an abelian group over any field. Fair
warning: this is one of those weird situations where showing commutativity is easy, but
showing associativity is much harder (its tedious).
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