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Any function addition law is due to
an elliptic curve lurking in the
background.

Karl Weierstraß

We have seen that EΛ is a field and is closed under differentiation. We have also
constructed a special elliptic function ℘(z). We prove the following result. Note that it
gives a practical algorithm for computing this rational function inductively.

Theorem 0.1. We have that EΛ = C(℘, ℘′). That is, all elliptic functions are rational
functions in ℘ and ℘′.

Proof. Let f ∈ EΛ. Then we can write f = g + ℘′h, where

g(z) =
f(z) + f(−z)

2

and

h(z) =
f(z)− f(−z)

2℘′(z)
.

Note that g and h are even elliptic functions. Thus, it suffices to show that the subfield
of all even elliptic functions is C(℘).

We do this by matching zeros and poles. If f ∈ EΛ is even, we list all zeros and
poles in ΠΛ.

Note that if z0 is a zero or pole of f , then so is −z0, as f(z0) = f(−z0). Further, if
2z0 6∈ Λ, then the representatives of z0,−z0 in ΠΛ are distinct. If z0 is a zero and 2z0 ∈ Λ
(that is, z0 is a 2-torsion point), then f ′ ∈ EΛ is an odd function so that

f ′(z0) = −f ′(−z0) = −f ′(z0 − 2z0) = −f ′(z0) =⇒ f ′(z0) = 0.

Thus, a zero at a 2-torsion point is a zero of at least order 2.
Finally, before continuing the proof, we note that for any a ∈ C, ℘(z) − ℘(a) has

a double pole at points in Λ and no other poles. Since the number of zeros (with
multiplicity) is equal to the number of poles, there are two zeros of ℘(z)− ℘(a), which
are a and −a (distinct if a 6∈ 1

2
Λ, a double zero if a ∈ 1

2
Λ).

1
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Thus, if z0 6∈ Λ is a zero of f , the order of vanishing of ℘(z)− ℘(z0) is at most that
of f at those zeros. In particular,

f1(z) :=
f(z)

℘(z)− ℘(z0)

has two fewer zeros at non-lattice points. The double pole of ℘(z)− ℘(z0) at 0 gives f1

order of vanishing two more than f . This introduces no new poles, and no other new
zeros (away from Λ).

Since there are only finitely many zeros in Π, repeating this process eventually yields
an elliptic function g(z) with zeros only at Λ. Now we get rid of the poles of g(z). We
do this by multiplying by factors ℘(z) − ℘(z0) in the same way. That is, if there is a
pole of g(z) at z0, then we multiply by ℘(z) − ℘(z0) to lower the order, and continue
until all the zeros and poles away from Λ are gone.

Thus, there is a choice of product

h(z) = f(z) ·
n∏
j=1

(℘(z)− ℘(z0))nj

where nj ∈ Z with no zeros or poles away from Λ. But the number of zeros equals the
number of poles in ΠΛ, so there are in fact no zeros or poles of h(z) (i.e., it has trivial
divisor). Thus, h(z) is a constant, and so f(z) is a rational function in ℘, as claimed.

�

A special differential equation. We now know that all elliptic functions are generated
by ℘, ℘′. Are there any special relations between the generators ℘, ℘′? That is, if I write
down distinct rational functions in our theorem above, do I get distinct elliptic functions?
The answer connects us with another big topic.

Consider (℘′)2. First, note that ℘′ has a triple pole on Λ, and no other poles. It has
three simple 0’s, specifically at the half-periods ω1, ω2, ω1 + ω2 (where Λ = 〈ω1, ω2〉).

Exercise 1. Show that ℘′ indeed has these three simple zeros.

Thus, these are all the zeros and poles. The above proof/algorithm implies that (℘′)2

is a cubic polynomial in ℘. Indeed, the square (℘′)2 has a double root at the three
half-periods and no poles outside of Λ, and so

(℘′)2 = C ·
(
℘(z)− ℘

(ω1

2

))(
℘(z)− ℘

(ω2

2

))(
℘(z)− ℘

(
ω1 + ω2

2

))

= C ·
3∏
j=1

(℘(z)− ℘(ei))

where C is a constant and e1, e2, e3 are the half-periods. To find C, we only need to
check near a single point. We can do this by comparing Taylor expansions at z = 0.
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First, we know

℘(z) = z−2 +O(1)

(the residue is zero since the sum of residues is). Thus, we have

℘′(z) = −2z−3 +O(1),

and the leading term of (℘′)2 is 4z−6. The leading term of the right hand side of the
formula for it in terms of products of ℘(z) − ℘(ei) is Cz−6. Thus, C = 4, and we have
shown the following.

Theorem 0.2. We have

(℘′(z))2 = f(℘(z)), where f(x) := 4
3∏
j=1

(x− ei).

We can also give another version of this differential equation. We will do this by
computing Taylor expansions, which will be very illuminating. Not worrying about the
radii of convergence,

Exercise 2. Fill in the analytic details of convergence in what follows.

we start with the geometric series

1

1− x
= 1 + x+ x2 + . . . .

Differentiating and substituting x = z/λ gives

1(
1− z

λ

)2 = 1 +
2z

λ
+

3z2

λ2
+ . . . .

Subtracting 1, dividing by λ2, and using the definition of ℘(z) (after a tiny bit of algebra),
we find

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

2z

λ3
+

3z2

λ4
+

4z3

λ5
+ . . . ..

As in the (see exercises) proof that the defining sum of ℘(z) is absolutely convergent,
this expression is too, and we have

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + . . . ,

where

Gk = Gk(Λ) :=
∑
λ∈Λ

′
λ−k

are the weight k Eisenstein series (the ′ on the sum will always mean to omit 0). As
we’ll see soon, these are our first examples of modular forms. Note that the odd powers
went away as Gk = 0 for k odd upon letting λ 7→ −λ, though we also knew this would
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happen since ℘ is even. We will shortly see why this is expected in modular forms as
well.

Thus, we can build a table

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + . . . ,

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 + 42G8z
5 + . . . ,

(℘′(z))2 =
4

z6
− 24G4 · z−2 − 80G6 + (36G2

4 − 168G8)z2 + . . . ,

℘(z)2 =
1

z4
+ 6G4 + 10G6z

2 + . . . ,

℘(z)3 =
1

z6
+ 9G4 · z−2 + 15G6 + (21G8 + 27G4)2z2 + . . . .

Taking the notation

g2 := 60G4, g3 := 140G6,

and comparing the above, we find the following.

Theorem 0.3. We have

(℘′)2 = 4℘3 − g2℘− g3.

Exercise 3. Show the details of the proof of this theorem. To do so, do the slightly
tedious algebra of comparing coefficients of the difference of LHS and RHS up to the
constant term, thus showing it has no zeros or poles. Deduce that the difference of LHS
and RHS has no poles and is hence constant. Looking at constant terms, deduce that the
constant is zero.

We will soon see that this result is the key to parameterizing elliptic curves over C.

Combinatorial Application. Another application is the study of convolution divisor
sum identities. First, we need one additional fact, which we leave as an exercise similar
to the above.

Exercise 4. Show that ℘′′ + 30G4 = 6℘2.

As a corollary of the differential equation and the expansions above, after some basic
algebra we find ∑

n≥2

(2n− 1)(2n− 2)(2n− 3)G2nz
2n−4 + 30G4

= 12
∑
n≥2

(2n− 1)G2nz
2n−4 + 6

∑
p,q≥2

(2p− 1)(2q − 1)G2pG2qz
2p+2q−4.

Comparing coefficients gives the following recursion.
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Theorem 0.4. We have that

(n− 3)(2n+ 1)(2n− 1)G2n = 3 ·
∑
p,q≥2
p+q=n

(2p− 1)(2q − 1)G2pG2q.

As special cases, we have that 7G8 = 3G2
4 and 11G10 = 5G4G6. As a hint of what’s

to come, if we take Λ = 〈1, τ〉, τ ∈ H, Gk is a modular form as a function of τ , and
its Fourier coefficients are essentially σk−1(n). The relation 7G8 = 3G2

4 is where the
following convolution formula we saw comes from (at least once we prove the formula
for Fourier expansions of Eisenstein series):

σ7(n) = σ3(n) + 120
∑

0<k<n

σ3(k)σ3(n− k).

Thus, this differential equation for ℘ implies infinitely many such identities all at once!
This recursion will also allow us to show that all modular forms on SL2(Z) are generated
by just G4, G6.

A “surprise” is that there is a sparser recurrence relation of Eisenstein series of a very
simple shape only discovered by Romik in 2015 by studying the Witten zeta function
for SU(3). These don’t come from elliptic functions in the same way, but Mertens and I
showed in a joint paper that there is a nice way to view these as coming from modular
forms. It would be interesting to search for or prove such things for Eisenstein series on
subgroups, or to study what happens for other Witten zeta functions.

As a final “amuse-bouche”, you may have wondered what the zeros of ℘ are. If you are
interested, take a glance at the formulas of Eichler-Zagier https://people.mpim-bonn.
mpg.de/zagier/files/doi/10.1007/BF01453974/fulltext.pdf and of Duke-Imamoğlu
https://www.math.ucla.edu/~wdduke/preprints/zeros.pdf. It may be surprising
that the zeros of ℘′, are easily determined (see the exercise above), but for ℘ it is defi-
nitely not easy to do so explicitly!

https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01453974/fulltext.pdf
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01453974/fulltext.pdf
https://www.math.ucla.edu/~wdduke/preprints/zeros.pdf
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