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I was over the moon when I proved
the moonshine conjecture”, and ”I
sometimes wonder if this is the
feeling you get when you take certain
drugs. I don’t actually know, as I
have not tested this theory of mine.

Richard Borcherds, according to
Roberts, Siobhan (2009), King of

Infinite Space: Donald Coxeter, the
Man Who Saved Geometry,

Bloomsbury Publishing USA, p. 361

Moonshine is a remarkable connection between modular forms and algebra. These
days, it has grown into a larger topic. However, for most of today, we’ll focus on
the special case of monstrous moonshine. The word “moonshine” besides the usual
definition of illegally manufactured liquor, also denotes something which is foolish or
crazy. Conway and Norton chose this term because at the outset, the connections
seemed so strange that they were almost “crazy” to believe. The term “monster” refers
to the monster group, which we’ll now discuss.

1. Classification of finite simple groups

One of the crowning achievements of modern algebra is the classification of finite
simple groups. Simple groups (recall that these are those with no non-trivial proper
normal subgroups) are the “building blocks” of finite group theory, similar to how the
prime numbers are the “atoms” of the integers. More precisely, the famous Jordan-
Hölder Theorem states that any finite group is built out of a unique sequence of simple
groups. Thus, in order to understand finite group theory in general, a first major goal
is to find all finite simple groups.

Theorem 1.1 (Classification of Finite Simple Groups). Let G be a finite simple group.
Then G is isomorphic to one of the following groups:

(1) The cyclic group Z/pZ for a prime number p.
(2) The alternating group An for n ≥ 5.
(3) A simple group of “Lie type.”
(4) The Tits group of order 17971200.
(5) One of 26 “sporadic groups” that don’t fit into any of the above categories.

This proof was extremely difficult, and required input by many many mathematicians.
In fact, it spanned tens of thousands of pages in hundreds of papers of about 100 authors.
A proof was claimed in 1983, but this had a gap. That gap was filled by a 1221 page
paper in 2004.

The largest of the sporadic groups is the Monster Group M. It is indeed quite
large, with order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053.

It also contains most of the sporadic examples inside of it, as 20 of the 26 groups are
quotients of subgroups of the monster.
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2. Strange properties of the monster

Even before this group was proven to exist, it was conjectured to satisfy some strange
“coincidences.” This is where modular forms come into the picture.

The connection with modular forms can already be observed by looking at the order
of the group. The primes that show up in the factorization of this number, listed above,
are very important. This is because

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}

is precisely the set of primes p for which

Γ0(p)
+,

the extension of Γ0(p) by the Fricke involution Wp, has genus 0. That is, for which

the corresponding modular curves Γ0(p)
+\Ĥ (recall that Ĥ = H∪ P1(Q)) are genus 0

compact Riemann surfaces. Fittingly, Ogg offered a bottle of Jack Daniels whiskey for
an explanation of this “coincidence.”

This already suggests a connection to modular functions. A general fact is that genus
zero implies that the set of functions on the curve, in this case, modular functions for
Γ0(p)

+, are generated by a single element. We saw this before in the case of SL2(Z), where
we proved that all level 1 modular functions are rational functions in the j-invariant.
If we normalize such a generator so that its constant term is zero and it has leading
coefficient 1, then its unique, and we call this function the Hauptmodul, or principal
modulus for Γ0(p)

+. For instance, the Hauptmodul in level 1 is the basic modification
of the j-invariant which we denote by J :

J(τ) := j(τ)− 744 = q−1 + 196884q +O(q2).

This number 196884 is a big hint in disguise. McKay started down the path that
eventually led to moonshine by making the observation that

196884 = 196883 + 1.

The left hand side is the q1 coefficient of the Hauptmodul for SL2(Z), as we saw. The
significance of 196883 is that it is the smallest dimension of a non-trivial irreducible
representation (irrep) of the monster M. Of course, 1 is also a dimension of an irrep,
the trivial one! Thus, the first interesting coefficient of J(τ) is a sum of dimensions of
irreps of M.

Surely this is just a coincidence! After all, what could the relation possibly be? On
the other hand, these numbers are pretty big, and extremely close. And the set of primes
above was also a fairly specific list of primes. However, if we look at further coefficients
of J(τ), similar patterns continue. For example, the next coefficient, of q2, is

21493760 = 21296876 + 196883 + 1,



MODULAR FORMS LECTURE 29 3

and 21296876 is also a dimension of an irrep of M. The same holds if we look at the
coefficient of q3:

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1,
when we note that 842609326 is also a dimension of an irrep of the monster, and the
smaller dimensions are now added with some multiplicities. But its still a pretty simple
relationship, and something must really be going on now!

3. Thompson’s idea

McKay became convinced that these formulas carried some meaning, and wrote to
Thompson. Thomspon suggested that such equations must indicate that there is an
infinite dimensional graded M-representation

V = V−1 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ · · ·
with V−1 = ρ0, V1 = ρ1 ⊕ ρ0, V2 = ρ2 ⊕ ρ1 ⊕ ρ0, V3 = ρ3 ⊕ ρ2 ⊕ ρ1 ⊕ ρ1 ⊕ ρ0 ⊕ ρ0
decompositions in terms of the irreps ρ0, ρ1, . . . of M. This could provide an explanation
of McKay’s observation if the coefficients of J(τ) are dimensions of the components:

J(τ) = dim(V−1) +
∑
n≥1

dim(Vn)qn.

Thompson went further. Given any element g ∈ M, we can consider the character of
the representation ρ given by

chρ(g) := tr(ρ(g)),

that is, by applying the representation and then taking a trace. There are 194 conjugacy
classes of M, and so working with these characters, while a transformed set of informa-
tion, is much easier than working with, in the smallest non-trivial case, 196883×196883
matrices! This leads to the McKay-Thompson series

Tg(τ) := chV−1(g)q−1 +
∑
n≥1

chVn(g)qn.

As a special case, if g is the identity, then ρ(g) is the identity matrix, and so the trace
is simply the dimension of the representation. Thus, TId recovers the series above that
we believe should be J(τ).

4. Full moonshine

Conway and Norton followed up on these ideas and discovered that many of the
McKay-Thompson series Tg are in fact Hauptmoduln. This led to the following conjec-
ture which they termed Monstrous Moonshine.

Conjecture 1. For any element g ∈M, the McKay-Thompson series Tg(τ) is a Haupt-
modul for some (specified) group Γg ≤ SL2(R).
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The next major step was that Atkin-Fong-Smith proved that Thompson’s graded
representation V exists and that the McKay-Thompson series are the correct Haupt-
moduln; however, this allowed for the possibility that the representation is virtual (a
virtual representation is an integer linear combination of representations).

Later, Frenkel-Lepowsky-Meurman proved Thompson correct by showing that the
representation V really does exist.

Finally, Borcherds tied up the classical story with the following huge result (he won
the Fields Medal for this and other work).

Theorem 4.1 (Borcherds). The Monstrous Moonshine Conjecture of Conway and Nor-
ton is true.

This was a sensational proof, and introduced revolutionary new methods. Borcherds
wrote down vertex algebras, complicated objects inspired by physics, which Frenkel,
Lepowsky, and Meurman modified to obtain vertex operator algebras (VOAs). The
definitions (and even giving a single non-trivial example) are very long, so we’ll have to
skip them here. However, there is a close relationship between VOAs and conformal field
theories from string theory, and the relationship of these objects to modular forms has
opened up a lot of doors. There are now many collaborations between modular forms
people and physicists which these connections made possible.

5. New theories of moonshine

All of the above is for the monster. However, there are other sporadic simple groups.
What about those? These turn out to be connected to modular objects as well! There
are several extensions, for example the Umbral Moonshine Conjecture of Cheng,
Duncan, and Harvey from 2012, which was a cohesive set of 23 conjectured infinite-
dimensional representations. The first case was proven by Gannon, and the remaining
ones by Duncan, Griffin, and Ono. Here, Hauptmoduln are replaced by more com-
plicated objects known as mock modular forms. However, a “VOA-type” algebraic
construction is still open, and if found, is likely to have wide-ranging applications. There
are also various arithmetic applications one can consider, for example to central L-values
of elliptic curves.

Thus, moonshine is a very surprising and amazing story, which has led to large sets of
new mathematics and physics, and will certainly lead to many more important theories
in the years to come.
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