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1. Poincaré series

To study central L-values of even weight newforms in families of quadratic twists, we
need the Shimura/Shintani-correspondence. This is a special map between integer
and half-integer weight modular forms. We will sketch one method for constructing this
correspondence which was given by Kohnen.

This construction will rely on two types of Poincaré series. Recall that a Poincaré
series is a modular form constructed as an average of slashing operators over the modular
group. Our prime example of this so far has been the Eisenstein series

Ek(τ) =
∑

γ∈Γ∞\SL2(Z)

1|kγ.

The generalized version of this, say to congruence subgroups Γ0(N), are the Poincaré
series for the seed ϕ:

Pk,N(ϕ; τ) :=
∑

γ∈Γ∞\Γ0(N)

ϕ|kγ.

As we saw, this is automatically modular of weight k if ϕ has the right asymptotics to
make this converge absolutely. It turns out that requiring

ϕ(τ) = O(vk−2+ε)

is sufficient. For instance, in k = 2, the seed function ϕ = 1 which gives the Eisenstein
series E2 almost works, as we saw, and for k ≥ 4 even, the function ϕ = 1 giving the
Eisenstein series Ek works.
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The Eisenstein series is the first case in an important family of Poincaré series.

Definition. The holomorphic Poincaré series of exponential type are the series
with seed function ϕ(τ) = qm, with m ∈ Z≥0:

Pk,N,m(τ) := Pk,N(qm; τ) ∈Mk(N)

If m = 0, then this is an Eisenstein series, and if m > 1, this is a cusp form.

These series for all m span Mk(N). Since there are infinitely many Poincaré series and
this is a finite-dimensional space, there are infinitely many relations among the Poincaré
series; however, these relations aren’t well-understood.

2. Three types of expansions of modular forms

Poincaré series are implicitly related to q-expansions (expansions around i∞), or ex-
pansions at other cusps (you need these for example to construct Eisenstein series which
span the part of Mk orthogonal to cusp forms in general level N). These are called para-
bolic expansions. Correspondingly, the Poincaré series we’ve just given are sometimes
called parabolic Poincaré series. Since the cusps are distinguished points, namely, they
are compactification points for Γ\H and there are only finitely many of them, expansions
around these points are quite natural. However, it turns out that there are other sorts
of expansions too, which were developed into a nice theory in general by Petersson.

There are also elliptic expansions, which are essentially Taylor series of modular
forms around points in H. We will soon be studying the leading term in these expansions,
namely the values of modular forms at points in the upper half plane. Specifically, we’ll
see that there is much deep structure of such values at CM points; imaginary quadratic
numbers in H.

The final type of expansion, which will be relevant for us here, are the hyperbolic
expansions (you may have guessed the name from the terms parabolic and elliptic
above). The language for these expansions comes from the following characterization.
A matrix in γ ∈ SL2(R) is elliptic if |tr(γ)| < 2, parabolic if |tr(γ)| = 2, and hyperbolic
if |tr(γ)| > 2.

We can see what’s special about this categorization through the lens of fixed points.
Given a matrix γ = ( a bc d ), a point τ ∈ H ∪ R ∪ {i∞} is fixed if

aτ + b

cτ + d
= τ =⇒ aτ + b = cτ 2 + dτ =⇒ cτ 2 + (d− a)τ − b = 0.

The discriminant of this quadratic equation is

(d− a)2 + 4bc = tr(γ)2 − 4 det(γ) = tr(γ)2 − 4.

Thus, if γ is parabolic, the discriminant is 0, and so there is just one fixed point, at
a−d
2c

. This expansion is related to Fourier expansions at the cusps, which are fixed points
of parabolic matrices. If γ is elliptic, then the discriminant is negative, so there is one
fixed point of γ in the upper half plane, and one in the lower half plane. This is used
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to study an expansion around this point in H; later to study values of modular forms
at CM points, we’ll make critical use of the matrix fixing these points. Finally, if γ is
hyperbolic, then the discriminant is positive, and so the fixed points are a pair of real
quadratic points on R. Hyperbolic expansions are thus related to expansions around
pairs of real quadratic points.

Remark. The terminology is meant to be reminiscent of the classification of plane conics
ax2+bxy+cy2 = 1 in terms of their discriminants b2−4ac; if the discriminant is negative,
its an ellipse, if the discriminant is 0, its a parabola, and if the discriminant is positive,
its a hyperbola.

An excellent reference with many nice pictures and explanations about the trifecta of
expansions of modular forms, by O’Sullivan and Imamoglu, can be found here: https:

//arxiv.org/pdf/0806.4398.pdf

3. Connection with quadratic forms and hyperbolic Poinaré series

Looking in more detail at the hyperbolic situation, given a pair of real quadratic points
η = (η1, η2) fixed by a hyperbolic matrix γη = ( a bc b ), the equation we gave above when
solving for fixed points gives an associated quadratic form:

Qγη(X, Y ) = cX2 + (d− a)XY − bY 2

of discriminant D = |a+ d|2 − 4 > 0 with Q(τ, 1) = 0 for τ = η1, η2. We also denote by
Γη the group of all hyperbolic matrices fixing η.

Following Katok we define on a subgroup Γ a set of hyperbolic Poincaré series by
(the notation “ϑ” does not mean that this is a theta function, but is just the notation
for this in the literature) :

ϑΓ,k,γη(τ) :=
∑

γ∈Γη\Γ

(
Qγη(τ)−

k
2

) ∣∣
k
γ.

Katok showed that ϑΓ,k,γη ∈ Sk(Γ), and, moreover, that like the parabolic Poincaré series
above, these also span the space of cusp forms.

A related function, which can be built out of Katok’s Poincaré series, is a very famous
function of Zagier, defined for D > 0 congruent to 0 or 1 mod 4 and integral k ≥ 2:

Fk,D(τ) :=
∑

b2−4ac=D
(a,b,c)=1

1

(aτ 2 + bτ + c)k
.

Exercise 1. Show that Zagier’s Fk,D function is modular by a direct calculation! That
is, show directly that Fk,D ∈ S2k(SL2(Z)).

https://arxiv.org/pdf/0806.4398.pdf
https://arxiv.org/pdf/0806.4398.pdf
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4. Relationship between the expansions

Given these three expansions of modular forms, it is natural to ask how they relate.
For instance, one can take Poincaré series with respect to one expansion, and then
ask about the expansions of the resulting modular forms with respect to any of the
above theories. There turn out to be very deep relationships here. We will look at
one uncovered by Kohnen, which gives an explicit way to view the Shimura/Shintani
correspondence.

For this, we need some modifications. Firstly, we need the genus character. This has
a complicated definition, but is important in many applications. In fact, the “strange”
looking function χ that was mentioned in one criterion for congruent numbers in the
epigraph at the top of the last set of notes was a specific evaluation of a genus character
in disguise. Given a discriminant D ≡ 0, 1 (mod 4), and given a quadratic form Q =
Q(x, y) = [a, b, c] = ax2 + bxy + cy2 in QD, the set of binary, integral (a, b, c ∈ Z)
quadratic forms of discriminant D, the genus character is given by

ωD(Q) :=

{
0 if (a, b, c,D) > 1(
D
r

)
if (a, b, c,D) = 1 and Q represents r with (r,D) = 1.

Here, by “Q represents m,” we mean that there are x, y ∈ Z with Q(x, y) = m.

Exercise 2. Show that this is in fact-well-defined by showing that if Q represents both r
and s, then 4rs can be written as x2−Dzy2 for x, y ∈ Z, and concluding (you may want
to refer to basic facts about Kronecker symbols if you haven’t worked with them much
before) that (

D

r

)
=

(
D

s

)
.

Now we have an action of SL2(Z) on QD given by

Q ◦
(
α β
γ δ

)
(x, y) := Q(αx+ βy, γx+ δy).

Exercise 3. Show that ωD(Q) is a function on SL2(Z)-classes.

Then we can modify Zagier’s original Fk,D function to a version with level and twisted
by a genus character. Specifically, for k ≥ 2, N ≥ 1, D,D′ ≡ 0, 1 (mod 4), z ∈ H, and
DD′ > 0, we set

fk,N(z;D,D′) :=
∑

b2−4ac=DD′

N |a

ωD([a, b, c])(az2 + bz + c)−k ∈ S2k(N).

In order to talk about the connection with elliptic curves, and hence access the Con-
gruent Number Problem, we need to consider the case of weight 2 cusp forms, that is,
when k = 1. The definition above is not absolutely convergent for k = 1, but it is for
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any k > 1. Thus, we can use a Hecke trick to extend to weight 2, as Kohnen did.
Consider

f1,N(z; s,D,D′) := vs
∑

b2−4ac=DD′

N |a

ωD([a, b, c])(az2+bz+c)−1|az2+bz+c|−s, (Re(s) > 0).

Then it turns out this has an analytic continuation to s = 0, which we denote f1,N(z;D,D′),
which is cuspidal if N is cube-free. The fact that this depends on cubes of primes di-
viding the level is a hint that this calculation has some real work in it!

The magic happens when we take generating functions.

Definition. For N odd, k ≥ 1, D a fundamental discriminant (this means that
D = 1 or is a discriminant of a quadratic field; or more elementarily, D ≡ 1 (mod 4)
and is square-free or D = 4m with m ≡ 2, 3 (mod 4) with m square-free), and the sign
of D chosen so that (−1)kD > 0, and with q = e(τ), we define

Ωk,N(z, τ ;D) := iNc
−1
k,D

∑
m≥1

(−1)km≡0,1 (mod 4)

mk− 1
2

∑
t|N

µ(t)

(
D

t

)
tk−1fk,N

t
(tz;D, (−1)km)

 qm.

Here iN is the index of Γ0(N)

iN := [SL2(Z) : Γ0(N)]

and

ck,D := (−1)b
k
2c|D|−k+ 1

2π

(
2k − 2

k − 2

)
2−3k+2.

As a function of z, this is in M2k(N), as the z-dependence is only in the fk,N functions.
Moreover, by the above, its cuspidal if k ≥ 2 or N is cube-free. Amazingly, it is a
modular form in the τ variable as well, but of a different weight.

Theorem (Kohnen). Letting ζ := e(z), for z ∈ H, we have

Ωk,N(z, τ ;D) = iNc
−1
k,D

(−1)b
k
2c(2π)k · 3

(k − 1)!

∑
n≥1

nk−1

 ∑
d|n

(d,N)=1

(
D

d

)
(n/d)kP

k,N,
n2|D|
d2

(τ)

 ζn.

This is thus a cusp form of half-integral weight in Sk+ 1
2
(4N).

The proof of this theorem is done by computing Fourier expansions (for example, for
the parabolic Poincaré series, one has to generalize our previous calculation of Fourier
expansions of Eisenstein series, and one must do the same for the hyperbolic Poincaré
series), and then by formally manipulating the sums in a brilliant manner. A miracle
then occurs, allowing one to express this two variable gadget as a weight 2k modular
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form in one variable and a weight k + 1/2 modular form in the other. Thus, the cor-
rectly “decorated” generating function of hyperbolic Poincaré series of one weight is a
generating function of parabolic Poincaré series of another weight.

We can use this function to shuffle between weights 2k and k + 1/2.

Definition. Given g ∈ Sk+ 1
2
(4N), the Shimura lifts are given by integrating using the

Petersson inner product:

g|Sk,N,D(z) := 〈g,Ωk,N(−z, •;D)〉 ∈ S2k(N).

Here • denotes the variable integrated over. The Shintani lifts of an even weight form
f ∈ S2k(N) are given by integrating against the other variable of Ωk,N :

f |S∗k,N,D(τ) := 〈f,Ωk,N(•,−τ ;D)〉 ∈ Sk+ 1
2
(4N).

This was not the original definition of Shimura and Shintani, but it is an equivalent
one, and essentially a “holomorphic projection” of previous kernel functions for the
Shimura/Shintani lift. A more classical and direct way to write the Shimura lift that’s
worth mentioning is the following, which is explicit but whose modularity properties
aren’t clear:

g|Sk,N,D =
∑
n≥1

∑
d|n

(d,N)=1

(
D

d

)
dk−1ag

(
n2|D|
d2

)
qn.

5. Applications to central L-values

How would one discover the “right” decorations in the generating function Ωk,N? You
may have noticed that the formula for Ωk,N in terms of the Pk,N,m’s looks similar to
the “classical” formulation of the Shimura lift. The reason for this is that the Poincaré
series Pk,N,m “pick off” Fourier coefficients of cusp forms.

Theorem (Petersson coefficient formula). For any f ∈ Sk(N), we have

〈f, Pk,N,m〉 = i−1
4N

Γ(k − 1
2
)

(4πm)k−
1
2

ag(m).

That is, the Poincaré series Pk,N,m is (up to a fixed constant) the kernel function
for the m-th Fourier coefficient on Sk(N) with respect to the Petersson inner product.

Sketch of proof. This is a classical technique called the “unfolding trick.” Let’s do it for
f ∈ S2k, that is, in the case of level 1 and even weight. Denote the seed of the Poincaré
series by ϕm(τ) := qm. Then we find that

〈f, P2k,m〉 =

∫
Γ(1)\H

f(τ)
∑

γ∈Γ∞\Γ(1)

ϕm(γτ)(cτ + d)−2kv2k−2dudv
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=
∑

Γ∞\Γ(1)

∫
F
f(γτ)ϕm(γτ) Im(γτ)2k dudv

v2

=
∑

γ∈Γ∞\Γ(1)

∫
γ·F

f(τ)ϕm(τ)v2k−2dudv

=

∫
Γ∞\H

f(τ)ϕm(τ)v2k−2dudv.

Now a fundamental domain for Γ∞\H is very simple! Its just a vertical strip 0 < u < 1,
v > 0. Thus, we obtain ∫ ∞

0

∫ 1

0

f(τ)ϕm(τ)v2k−2dudv.

As in the formula we’ve written before for writing Fourier coefficients of functions as
integrals over horizontal lines of length one, the integral over u picks off the m-th Fourier
coefficient, and the integral over v just gives the other fixed constant. �

This is also used to show the main result we are after here.

Theorem (Kohnen-Zagier, Kohnen). Let D be a discriminant with (−1)kD > 0 and

for all primes p|N , we have
(
D
p

)
= Wp, the Atkin-Lehner eigenvalue of f ∈ Snew

2k (N)

a weight 2k newform. Then for square-free levels N , there is an Atkin-Lehner-Li-style
newform theory for S+

k+ 1
2

(4N), the Kohnen plus space of forms whose n-th Fourier

coefficients vanishes unless (−1)kn ≡ 0, 1 (mod 4).
Then, as Hecke modules, we have an isomorphism

Snew,+

k+ 1
2

(4N) ∼= Snew
2k (N).

In particular, Sk,N,D preserves newforms and commutes with all Hecke operators.
Moreover, if g =

∑
n c(n)qn ∈ Snew,+

k+ 1
2

(4N) corresonds to a weight 2k level N newform

f , then we have

|c(|D|)|2

〈g, g〉
= 2ν(N) (k − 1)!

πk
|D|k−

1
2
L(f ⊗ χD, k)

〈f, f〉
.

Here, ν(N) denotes the number of prime divisors of N . In particular,

|c(|D|)|2 .
= L(f ⊗ χD, k),

and so

c(|D|) = 0 ⇐⇒ L(f ⊗ χD, k) = 0.

This is a more explicit version in our case of a more general earlier result of Wald-
spurger.
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6. Tunnell’s Theorem

Tunnell applied this relationship between coefficients of the corresponding half-integral
weight modular form and central L-values of quadratic twists of the integral weight mod-
ular form to study the Congruent Number Problem. To do this, he took the congruent
number elliptic curve E1, which has level 32. Let f ∈ S2(32) be the unique normalized
newform (this happens to be a one-dimensional space), which thus corresponds to E1

under the Modularity Theorem. We saw before that, under BSD,

n is congruent ⇐⇒ L(En, 1) = 0 ⇐⇒ L(f ⊗ χn, 1) = 0.

Combining with the above, we expect for g a weight 3/2 level 128 modular form corre-
sponding to f under the Shimura/Shintani correspondence, that

n is congruent ⇐⇒ ag(n) = 0.

The fact that the level is 32, so not square-free or even cube-free, as well as that it has a
lot of 2’s makes things annoying, so one cannot apply Kohnen-Zagier immediately. But
it can be made to work. Tunnell did such a calculation, and while we won’t give all the
details, we can note that such a calculation is a finite one as the modular forms spaces
involved are finite-dimensional (and not even very large dimensions).

Theorem (Tunnell). There are explicit modular forms f, f ′ in S 3
2
(128) and S 3

2
(128, χ2),

respectively, which correspond to f ∈ S2(32)new under the Shimura/Shintani correspon-
dence. For the congruent number curves En, we then have the following Waldspurger-
Kohnen-Zagier-type result:

L(En, 1)
.
=

{
|af (n)|2 if n is odd,

|af ′(n)|2 if n is even.

Here is roughly how Tunnell’s calculation goes. To build up the weight 3/2 spaces,
we use the nice theta function of weight 1 for the two-dimensional lattice Z2, which is
also an eta product:

f1(τ) :=
∑
m,n∈Z

(−1)nq(4m+1)2+8n2

= η(8τ)η(16τ).

The representation in terms of eta functions in particular shows that this is a cusp form.
Using the ordinary Jacobi theta function ϑ(τ), we can get modular forms in S 3

2
(128, χ2)

by forming the following products of f1 with ϑ hit with V -operators:

f1(τ)ϑ(2τ), f1(τ)ϑ(4τ), f1(τ)ϑ(8τ), f1(τ)ϑ(16τ).

The products here are then sums over Z3 with ternary quadratic forms as powers of q
when you write them out.

This is the last ingredient we need for Tunnell’s main result if we wish to just assume
BSD. But one direction of the above if and only if implications is actually known. This
was first done by Coates-Wiles, who showed that if the rank of a CM elliptic curve is
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positive, then L(E) = 0. Although the congruent number curve has CM, so this would
be sufficient for our purposes, its worth mentioning the best known progress towards
BSD. Kolyvagin later showed that the Coates-Wiles result holds for any rational elliptic
curve, even non-CM ones. Gross-Zagier and Kolyvagin in fact proved the following
incredible result.

Theorem (Gross-Zagier, Kolyvagin). If a rational elliptic curve E has order of vanish-
ing ords=1L(E, s) equal to 0 or 1, then

rkQ(E) = ords=1L(E, s).

We finally have all the pieces needed, which we have been building to throughout
the whole semester. Tunnell used the aforementioned explicit calculations to prove the
following stunning result.

Theorem (Tunnell (1983)). Let n be square-free, odd, and congruent. Then we have

#
{
x, y, z ∈ Z | n = 2x2 + y2 + 32z2

}
=

1

2
#
{
x, y, z ∈ Z | n = 2x2 + y2 + 8z2

}
.

Let n be square-free, even and congruent. Then we have

#
{
x, y, z ∈ Z | n

2
= 4x2 + y2 + 32z2

}
=

1

2
#
{
x, y, z ∈ Z | n

2
= 4x2 + y2 + 8z2

}
.

In both cases, the converse is true assuming BSD.

This gives a surprising, and remarkably efficient way to check if n is congruent. In
fact, Bach and Ryan showed that this criterion can be checked using time and space
O(n

1
2

+o(1)). Finding the explicit triangles that this criterion says exist if n passes the
test is much harder, but other methods can be used to do so as well, as in Zagier’s
famous n = 157 example we saw at the beginning of the class.
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