LECTURE 26: APPLICATIONS TO THE CONGRUENT NUMBER PROBLEM

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

For a fundamental discriminant $0>D \equiv 5(\bmod 8)$ with $3|D|$ not a square, consider the finite sums over quadratic forms $[a, b, c]$ of discriminant $-3 D$:

$$
\begin{aligned}
& \qquad A:=\sum_{\substack{b^{2}-4 a c=-3 d \\
a+3 b+9 c>0>a \\
32 \mid a}} \chi([a, b, c]), \\
& B:=\sum_{\substack{ \\
b^{2}-4 a c=-3 d \\
c>0>a \\
32 \mid a}} \chi([a, b, c]) \\
& \text { with } \chi([a, b, c]) \text { equal to }\left(\frac{-3}{a}\right) \text { if } 3 \nmid a, \\
& \text { and equal to }\left(\frac{-3}{c}\right) \text { if } 3 \mid a \text {. Then under } \\
& \text { BSD, } \\
& |D| \text { is a congruent number } \Longleftrightarrow A=B .
\end{aligned}
$$ BSD,

> Theorem of
> Ehlen-Guerzhoy-Kane-Rolen giving an alternative way to test if numbers are congruent; we'll give a different formula due to Tunnell later.

Recall from earlier that if we want to determine if n is congruent, we want to test if the rank $\operatorname{rk}\left(E_{n}\right)$ is positive or not. Assuming BSD ,

$$
n \text { is congruent } \Longleftrightarrow \operatorname{rk}\left(E_{n}\right)>0 \Longleftrightarrow L\left(E_{n}, 1\right)=0 .
$$

Now each E_{n} is related to a weight 2 newform by the Modularity Theorem (or, as we saw, its related to a theta series for a Hecke character, without the full power of the Modularity Theorem required).

We also saw that E_{n} is the n-th quadratic twist of the congruent number curve E_{1}. As the elliptic curves E_{n} are obtained in an easy way from E_{1}, its natural to ask whether the same holds for their modular form counterparts. This is indeed true.

Definition. Given a cusp form $\sum a_{n} q^{n} f \in S_{k}^{\text {new }}(N)$, and given a d such that $(d, N)=1$, define its quadratic twist by the character $\chi_{d}:=\left(\frac{d}{.}\right)$ as the q-series

$$
\left(f \otimes \chi_{d}\right)(\tau):=\sum \chi_{d}(n) a_{n} q^{n}
$$

This twist is a modular form:

$$
f \otimes \chi_{d} \in S_{2}\left(16 N d^{2}\right)
$$

This plays the same role on the modular forms side as quadratic twists play on the elliptic curve side. Specifically, if n is squarefree and $L(E, s)=L(f, s)$ for a rational elliptic curve E and a corresponding weight 2 newform f, then

$$
L(E(d), s)=L\left(f \otimes \chi_{d}, s\right)
$$

where we recall that $E(d)$ denotes the d-th quadratic twist of E in general.

Thus, determining if n is congruent boils down to studying when $L\left(f \otimes \chi_{n}, 1\right)$ vanishes, where f is a weight 2 newform of level the conductor of E_{1} (this happens to be 32). How should we expect these vanishing values to vary on average for different choices of d ? It turns out we can say a lot without too much work. For this, we first require the specific shape of the functional equations for our L-functions.

Definition. Let f be an even weight $2 k$, level N newform. Recall the Fricke involution:

$$
W_{N}:=\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)
$$

Acting on the upper half plane, this is indeed an involution, and so

$$
f \mid W_{N}= \pm f
$$

We call this $\operatorname{sign} \varepsilon(f)$; that is, $f \mid W_{n}=\varepsilon(f) f$. The completed L-function is then

$$
\Lambda(f, s):=\left(\frac{2 \pi}{\sqrt{N}}\right)^{-s} \Gamma(s) L(f, s)
$$

This satisfies the functional equation

$$
\Lambda(f, s)=\varepsilon(f)(-1)^{-k} \Lambda(f, 2 k-s)
$$

That is, $\varepsilon(f)(-1)^{k}$ is the sign of the functional equation.
In particular, for elliptic curves, we have the same completion, and then we have a functional equation whose sign of the functional equation we denote by w_{E} :

$$
\Lambda(E, s)=w_{E} \Lambda(E, 2-s)
$$

We call this number w_{E} the root number.
In families of quadratic twists, the root number is easy to determine, as:

$$
w_{E(d)}=w_{E} \chi_{d}(-N)
$$

The point is that this root number determines the parity of the order of vanishing of $L(E, 1)$. Elliptic curves with larger rank are rare, and one expects that "most of the time," an elliptic curve takes the minimal rank which this restriction allows. That is, if $w_{E}=+1$, then under BSD, the rank is an even number, and most likely 0 . If, on the other hand $w_{E}=-1$, then the rank is an odd number, automatically non-zero.

Thus, under BSD, in families of quadratic twists, we can easily produce many examples of positive rank curves due to this parity restriction using only the values of the character χ_{d}. As this character is ± 1 equally often, 50% of elliptic curves in a family of quadratic twists are even, and 50% are odd. This leads to the following famous open problem.

Conjecture 1 (Goldfeld). Families of quadratic twists of elliptic curves generically have 50% rank 0 curves and 50% rank 1 curves.

In particular, we expect that about half of all square-free numbers n are congruent.
To give our promised test for when a number is congruent, we will actually encode the family of L-values $L\left(E_{n}, 1\right)$ using a single half-integral weight modular form. To do so, we will give a map
\{ integral weight modular forms $\} \leftrightarrow\{$ half-integral weight modular forms $\}$
where the half-integral weight modular forms "know" all L-values of the quadratic twists of their corresponding integral weight modular forms.

These maps were constructed by Shimura and Shintani, and the general results connecting to L-values follow from important work of Waldspurger. Next time, we'll start talking about a newer construction of Kohnen, which Kohnen and Kohnen-Zagier used to give an explicit form of Waldspurger's results convenient for our purposes.

