
LECTURE 23: ZETA FUNCTIONS OF CURVES

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

Der Baron (Zeta) gab heute sein
Bestes, Wir bringen ihm ein dreifach
Hoch! (Zeta gave his best today, so
we give him a triple toast!))

From Lehar’s “The Merry Widow”

We have seen the Riemann zeta function and L-functions attached to modular forms.
These are L-functions attached to analytic objects. We now wish to describe L-functions
attached to geometric ones.

Given a sequence N1, N2, . . ., we define the associated zeta function transform as

Z(T ) := e
∑

r≥1NrT r/r.

Here, the exponential is formal, namely, the exponential of a formal power series f(T )
is

ef(T ) :=
∑
k≥0

f(T )k

k!
.

Now for the geometry. An (affine) variety over a field K in n-dimensions is the
solution set to a finite list of polynomial equations fj(x1, . . . , xn) = 0. A projective vari-
ety is a zero set of a system of homogenous polynomials fj(x1, . . . , xn+1) over projective
space PnK .

Suppose that V is an (affine or projective) variety over a finite field Fq with q = pn.
Then consider the sequence Nr := #V (Fqr), that is, the number of points on the variety
over finite field extensions. The congruence zeta function is then

Z(F/Fq;T ) := e
∑

r≥1 #V (Fqr )T
r/r.

For instance, Z(V/Fp;T ) “knows” about the number of points on the variety over all
finite fields of characteristic p.

Example. Let N1 = N2 = . . . = 1. This arises geometrically by letting V be the variety
consisting of a single point. For example, let V = {0} be the set of solutions to the
one-variable polynomial x = 0. Then

Z(T ) = e
∑

r≥1 T
r/r = e− log(1−T ) =

1

1− T
.

Example. Let V be the projective line over Fq. Then over Fqr , there are qr + 1 points
(one point at infinity). That is, Nr = qr + 1. Then∑

r≥1

T r

r
Nr =

∑
r≥1

(qT )r

r
+
∑
r≥1

T r

r
= − log(1− qT )− log(1− T ).

Thus, the zeta function is

Z(T ) =
1

(1− T )(1− qT )
.
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Example. Let V be an elliptic curve E. Then it turns out that

Z(E/Fq;T ) =
1− 2aET + qT 2

(1− T )(1− qT )
,

where aE ∈ C. Assuming this fact, let’s recover Nr to see what this is really saying.
Factoring

(1− 2aET + qT 2) = (1− αT )
(

1− q

α
T
)
,

and taking log derivatives, we find that the point counts Nr are given by

Nr = qr + 1− αr −
( q
α

)r
.

Then

N1 = #E(Fq) = q + 1− α− q

α
= q + 1− 2aE.

Thus, the above expression for the zeta function is really

V (E/Fq;T ) =
1 + (#E(Fq)− q − 1) + qT 2

(1− T )(1− qT )
.

This last example is a basic instance of the Weil Conjectures, which are now a
theorem of Deligne. Let’s describe these in the case of curves.

Conjecture 1 (Weil Conjectures for Curves, Theorem of Deligne). Let V be a smooth
projective curve. Then the following are true.

(1) The zeta function Z(V/Fq;T ) is a rational function of the form

P (T )

(1− T )(1− qT )
,

where P (T ) ∈ Z[T ] has constant term 1.
(2) If V is the reduction mod p of a variety of genus g over Q, then deg(P ) = 2g.
(3) If α is a reciprocal root of the numerator, then so is q/α.
(4) We have the following Riemann Hypothesis for curves: All reciprocal roots

of of the numerator have absolute value
√
q.

We will prove this in the special case of the congruent number curves En : y2 =
x3 − n2x. This proof is not completely special to En, but what’s really going on is that
these curves have complex multiplication, a theory we’ll discuss more later.

So we need to compute the number of points of En over finite fields. To do this,
the first helpful step is to diagonalize. Assume that p - 2n, that is, that p is of good
reduction (recall: this means the reduction mod p is still an elliptic curve). Then we’ll
relate points between the two curves

En ↔ E ′n,
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where E ′n : u2 = v4+4n2. This correspondence works as follows. To map from E ′n → En,
send

(u, v) 7→
(

1

2
(u+ v2),

1

2
v(u+ v2)

)
.

Then by basic algebra we check that(
1

2
v(u+ v2)

)2

−
(

1

2
(u+ v2)

)3

+ n2 · 1

2
· (u+ v2) = 0,

so that the image is indeed on En.
In the reverse direction, let (x, y) ∈ En with x 6= 0. Then

(u, v) =

(
2x− y2

x2
,
y

x

)
∈ En.

This is thus a bijection

E ′n(Fq)↔ En(Fq) \ {0, 0}.
Thus, its sufficient to count Fq solutions to E ′n, call the number of points N ′. Then

N1 = #En(Fq) = N ′ + 2 (there is a point at infinity as well as the one point missed in
the above bijection).

Counting points over finite fields on diagonal hypersurfaces (hypersurfaces are things
of codimension 1) can be done using Gauss and Jacobi sums. To set these up, we first
discuss characters. A multiplicative character is a homomorphism χ : F×q → C×. An
additive character is a homomorphism ψ : Fq → C× where the domain is the additive
group of the field. We’ll consider the character

ψ(x) = ζTr(x),

where ζ = e(1/p) is a primitive p-th order root of unity and Tr is the trace map from

Fq to Fp (the sum of Galois conjugates x + xp + . . . + xp
n−1

). This gives a non-trivial
additive character, which we’ll fix.

Assuming the notation above, we define the Gauss sum

g(χ) :=
∑
x∈Fq

χ(x)ψ(x).

We don’t have to consider the value at 0 as χ(0) = 0 for all characters even the trivial
one χtriv. We also need the Jacobi sum of two multiplicative characters

J(χ1, χ2) =
∑
x∈Fq

χ1(x)χ2(1− x).

We list some of the classical properties of these character sums.

Proposition. Let χ denote a non-trivial character, and let χ be the conjugate character
such that χ(x) = χ(x). Then the following hold.
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(1) We have g(χtriv) = −1 and J(χtriv, χtriv) = q − 2. Further, J(χtriv, χ) = −1,
J(χ, χ) = −χ(−1), and J(χ1, χ2) = J(χ2, χ1).

(2) We have the product formula g(χ)g(χ) = χ(−1)q and |g(χ)| = √q.
(3) If χ2 6= χ1, then

J(χ1, χ2) =
g(χ1)g(χ2)

g(χ1χ2)
.

We now return to computing N ′. The key step now we have diagonalized our curve
is based on the following.

Exercise 1. Show that if a ∈ F×q with m|(q − 1), then

#{x ∈ Fq|xm = a} =
∑
χm=1

χ(a).

That is, the number of solutions over Fq to xm = a is the sum of values at a of multi-
plicative characters whose m-th power is the trivial character. Both sides are m if a is
an m-th power, and are 0 otherwise.

We’ve already shown that N1 = q + 1 if q ≡ 3 (mod 4) a long time ago. So let’s
assume q ≡ 1 (mod 4). Then we break up our point count into the sum of solutions to
the equations where v = 0, where u = 0, and then where neither u nor v is 0:

N ′ = #{u ∈ Fq|u2 = 4n2}+#{v ∈ Fq|0 = v4+4n2}+#{u, v ∈ F×q |u2 = v4+4n2} =: N ′1+N
′
2+N

′
3.

Since p - 2n, we immediately see that N ′1 = 2. The number N ′2 can be computed
using the exercise. When is −4n2 a 4 − th power? To use the exercise, we consider
the characters of order dividing 4. Since F×q is cyclic, say we choose F×q = 〈g〉, we get
one character of order 4 by choosing χ4(g) = i. This is a character of order 4, and the
characters of order dividing 4 are just the powers of this. Thus, using the exercise and
the fact that −4n2 is a square in Fq since q ≡ 1 (mod 4),

N ′2 =
4∑
j=1

χj4(−4n2) = 2 + 2χ4(−4n2).

Now we evaluate N ′3. Take χ2 := χ2
4, a character of order 2. Then the exercise implies

that

N ′3 =
∑
a,b∈F×

q

a=b+4n2

#{u2 = a} ·#{v4 = b}

=
∑
a∈F×

q

a−4n2 6=0

∑
j=1,2,3,4
k=1,2

χk2(a)χj4(a− 4n2).
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Using our assumption that χ4(a − 4n2) = 0 if a − 4n2 = 0, we can delete the bottom
condition on the first sum. We then change variables to x = a/4n2 and reverse the order
of summation to obtain∑

j=1,2,3,4
k=1,2

χj4(−4n2)
∑
x∈F×

q

χk2(x)χj4(1− x) =
∑

j=1,2,3,4
k=1,2

χj4(−4n2)J(χk2, χ
j
4).

Combining all three pieces together gives

N ′ = 4 + 2χ4(−4n2) +
∑
j=1,3

χj4(−4n2)J(χ2, χ
j
4) + q − 2 + 3 · (−1) + 2χ4(−4n2) · (−1).

Here, the first two summands on the right hand side were N ′1+N ′2, the sum with j = 1, 3
are the terms from N ′3 with k = 1, j = 1, 3, and the rest of the terms were simplified
by using the properties above for Jacobi sums when one of the characters is trivial or
conjugate to the other. Simplifying further, this becomes

q − 1 + χ4(−4n2) (J(χ2, χ4) + J(χ2, χ4)) .

We need one additional small fact.

Exercise 2. Show that χ4(−4) = 1.

This implies that χ4(−4n2) = χ2(n). Thus, recalling that N1 = N ′ + 2,

N1 = q − 1 + χ2(n)
(
J(χ2, χ4) + J(χ2, χ4)

)
,

where we used χ2 = χ2 since χ2 is real. The above properties then show that

N1 = q + 1− α− α,
where

α = −χ2(n)J(χ2, χ4) = −χ2(n)
g(χ2)g(χ4)

g(χ2χ4)
= −χ2(n)

g(χ2)g(χ4)

g(χ4)
.

By the properties Gauss sums above, we find that

|α|2 = q,

which is where the “Riemann Hypothesis” in this case comes from. Its also useful for
finding α. To determine it exactly, note that α is a Gaussian integer, that is, in Z[i],
since the values of χ2, χ4 all are. So let’s say α = a+ bi with a, b ∈ Z, with a2 + b2 = q.
We say that α is a Gaussian integer with norm q.

There are not many Gaussian integers satisfying this. We will focus on the cases when
q is a prime or a square of a prime. If q = p ≡ 1 (mod 4), then there are 8 choices with
this same absolute value:

α = ±a± bi,±b± ai.
If q = p2 with p ≡ 3 (mod 4) prime, then there are even fewer choices:

α = ±p,±pi.
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The exact choice here can be determined with the following additional information:
Claim: We have that 1 + J(χ2, χ4) is divisible by 2 + 2i in Z[i].

Proof. By the property 3 in the Proposition above, applied to both J(χ2, χ4) and
J(χ4, χ4), we find that

J(χ2, χ4) = J(χ4, χ4)
g2(χ2)

g(χ4)g(χ4)
= χ4(−1)J(χ4, χ4).

Now

J(χ4, χ4) =
∑

χ4(x)χ4(1− x) = χ2
4

(
q + 1

2

)
+ 2

∑
′χ4(x)χ4(1− x),

where
∑′ denotes a sum over (q − 3)/2 elements, one from each pair (x, 1 − x) with

the pair ( q+1
2
, q+1

2
) pulled out front. Now χ4(x) is a power of i, so χ4(x) = im ≡ 1

(mod 1 + i). To see that, note that (1 + i)(1− i) = 1 + 1 = 2 ≡ 0, so 1 ≡ −1 and hence
i ≡ −1 ≡ 1. Thus,

2χ4(x)χ4(1− x) ≡ 2 (mod 2 + 2i),

and so

J(χ4, χ4) = q − 3 + χ2
4

(
q + 1

2

)
≡ 2 + χ4(4) (mod 2 + 2i)

as q ≡ 1 (mod 4). Thus,

1 + J(χ2, χ4) = 1 + χ4(−1)J(χ4, χ4) ≡ 1 + χ4(−4) + 2χ4(−1) (mod 2 + 2i).

We saw above that χ4(−4) = 1, and

2(1 + χ4(−1)) ∈ {0, 4},

so the claimed divisibility follows. �

Thus, all of this work and our previous result on point counts when p ≡ 3 (mod 4)
has shown the following special case of the Weil Conjectures:

Theorem. If p is a prime of good reduction, then the zeta function for En factors as

Z(En/Fp;T ) =
(1− αT ))(1− αT )

(1− T )(1− pT )
.

Moreover, α = i
√
p if p ≡ 3 (mod 4), and α is an element of Z[i] of norm p which is

congruent to the Legendre symbol
(
n
p

)
modulo 2 + 2i if p ≡ 1 (mod 4).

Remark. If p ≡ 1 (mod 4), this explicitly means that we choose α = a+ bi with a odd,
b even, and where the sign of a is determined by the congruence. The choice between
a+ bi and a− bi doesn’t change the formula, but just reverses the roles of α and α.
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Proof. We need Nr for p ≡ 1 (mod 4) and N2r for p ≡ 3 (mod 4) (as we know all odd r
values Nr when p ≡ 3 (mod 4) already). We consider q = p if p ≡ 1 (mod 4) and q = p2

if p ≡ 3 (mod 4), and have to see what happens when we replace q by qr. Let χ2,1 be
the unique character of order 2 over F×q , and let χ4,1 be a choice of a character of order
4 (the two possibilities are complex conjugates of one another). Composing with the
norm map Fqr → Fq (the norm of an element g is the product of its Galois conjugates,

namely g1+q+...+q
r−1

) gives characters of order 2, 4 over F×qr . Call them χ2,r and χ4,r. Call
this norm map Nr, so

χ4,r = χ4 ◦ Nr, χ2,r = χ2 ◦ Nr.

From the work above,
#En(Fqr) = qr + 1− αn,qr − αn,qr ,

where

αn,qr = −χ2,r(n)
g(χ2,r)g(χ4,r)

g(χ4,r)
.

We now need the Hasse-Davenport formula, which describes how Gauss sums change
over extensions:

−g(χ ◦Nr) = (−g(χ))r.

Using this, and χ2,r(n) = χ2(n
r) = χr2(n), we obtain

αn,qr = αrn,q.

Now if q = p ≡ 1 (mod 4), then χ2(n) =
(
n
p

)
by uniqueness of a character of order 2.

By the above, α = αn,p is a Gaussian integer of norm p congruent to
(
n
p

)
modulo 2 + 2i,

and by the above
Nr = pr + 1− αr − αr.

Writing this out in the original generating function definition proves the theorem.
If p ≡ 3 (mod 4) and q = p2, then χ2(n) = 1 as all elements of Fp are squares in Fp2 .

By the same calculations as above, αn,q is a Gaussian integer of norm q congruent to
1 (mod 2 + 2i). There are 4 Gaussian integers of norm q, namely ijp for j = 0, 1, 2, 3.
Only αn,q = −p satisfies the congruence. Hence,

Nr = #En(F
q
r
2
) = pr + 1− (−p)

r
2 − (−p)

r
2 .

As Nr = pr + 1 for odd r, for any r we have

Nr = pr + 1− (i
√
p)r − (−i√p)r.

This finishes the proof. �

Next time, we will see how to connect the congruence zeta functions for different
primes together to obtain the L-function for the elliptic curve.


