MODULAR FORMS LECTURE 21: L-FUNCTIONS FOR MODULAR FORMS

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

When the Zetas fill the sky, Will our leaders tell us why? Fully loaded satellites, Will conquer nothing but our minds.

- Matthew Bellamy

Given $\sum_{n \geq 0} a_{n} q^{n}=f \in S_{k}$, we define the L-function attached to f as the Dirichlet series

$$
L(f, s):=\sum_{n \geq 1} \frac{a_{n}}{n^{s}} \quad \operatorname{Re}(s) \gg 0 .
$$

The nicest case is when f is a Hecke eigenform. Then the coefficients are multiplicative, and the L-function has an Euler product. To see this, let's look at the prototypical example.

Example. The Riemann zeta function is

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad(\operatorname{Re}(s)>1)
$$

Euler noticed that it factorizes as

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}
$$

where the product is over the set of prime numbers. This can be though of as the "analytic version of the Fundamental Theorem of Arithmetic." Namely, it is just a generatingfunction encoding of the fact that all integers factor uniquely as products of primes.

The same type of Euler product, a product of similar terms over primes, holds for any Dirichlet series $\sum_{n \geq 1} b_{n} n^{-s}$ whenever the b_{n} are multiplicative. In our case, we have

$$
L(f, s)=\prod_{p}\left(1+\frac{a_{p}}{p^{s}}+\frac{a_{p^{2}}}{p^{2 s}}+\ldots\right) .
$$

This only used multiplicativity. But we also have the Hecke relations for prime powers too! Suppose that $a_{p^{r}}$ are a sequence satisfying Hecke relations at prime powers, and consider the generating function

$$
A_{p}:=\sum_{r \geq 0} a_{p^{r}} x^{r}
$$

Then
$A_{p}=1+\sum_{r \geq 0} a_{p^{r+1}} x^{r+1}=1+\sum_{r \geq 0} a_{p} a_{p^{r}} x^{r+1}-\sum_{r \geq 1} p^{k-1} a_{p^{r-1}} x^{r+1}=1+a_{p} x A_{p}-p^{k-1} x^{2} A_{p}$.
Solving yields

$$
A_{p}=\frac{1}{1-a_{p} x+p^{k-1} x^{2}}
$$

Letting $x=p^{-s}$ and plugging in our previous formula gives.
Proposition. If f is a Hecke eigenform in S_{k}, then $L(f, s)$ has the following Euler product:

$$
L(f, s)=\prod_{p} \frac{1}{1-a_{p} p^{-s}+p^{k-1-2 s}} .
$$

Example. We can also define L-functions for non-cusp forms. The term $n=0$ in the Dirichlet series won't make sense, so we just ignore it and still define for $f \in M_{k}$

$$
L(f, s):=\sum_{n \geq 1} \frac{a_{f}(n)}{n^{s}}
$$

We've seen that the coefficients of Eisenstein series involve zeta values, so it will not be a surprise to find that $L\left(G_{k}, s\right)$ is related to $\zeta(s)$. Specifically, we work with the Euler product computation above and similarly look at

$$
a_{p^{r}}=\sigma_{k-1}\left(p^{r}\right)=\frac{p^{(r+1)(k-1)}-1}{p^{k-1}-1}
$$

where here we used the geometric series. Then as above, we compute

$$
A_{p}=\sum_{r \geq 0} \frac{p^{(r+1)(k-1)}-1}{p^{k-1}-1} x^{r}=\frac{1}{\left(1-p^{k-1} x\right)(1-x)}
$$

Thus, we obtain
$L\left(G_{k}, s\right)=\prod_{p} \frac{1}{1-\sigma_{k-1}(p) p^{-s}+p^{k-1-2 s}}=\prod_{p} \frac{1}{1-p^{k-1-2 s}} \cdot \prod_{p} \frac{1}{1-p^{-s}}=\zeta(s-k+1) \zeta(s)$.
We now look at the region of convergence of our definitions of modular L-functions. When Dirichlet series converge absolutely, they do so in a right half-plane. This is because $\left|n^{-s}\right|$ depends only on $\operatorname{Re}(s)$. The region depends on the growth rate of the coefficients a_{n}. We've shown that for a cusp form, the coefficients satisfy the asymptotic
bound $a_{n}=O\left(n^{\frac{k}{2}}\right)$ (which can be improved by the work of Deligne). This is enough to guarantee that $L(f, s)$ converges for $\operatorname{Re}(s)>\frac{k}{2}+1$.

As Riemann showed holds for $\zeta(s)$, Hecke showed that these L-functions have analytic continuations to the whole complex plane, and have a functional equation. These follow from properties of the Mellin transform. Recall that the Gamma function is

$$
\Gamma(s):=\int_{0}^{\infty} t^{s-1} e^{-t} d t, \quad(\operatorname{Re}(s)>0)
$$

This extends the factorial function via the relation $\Gamma(n+1)=n$! for $n \in \mathbb{Z}_{\geq 0}$. This is because just as for n !, we have the relation $\Gamma(s+1)=s \Gamma(s)$. This gives a continuation of $\Gamma(s)$ to a meromorphic function on \mathbb{C} with poles at $\mathbb{Z}_{\leq 0}$. Similarly, for all ζ and L-functions, the analytic continuation will come from a functional equation.

The Gamma function is the prototypical Mellin transform. More generally, if $\varphi(t)$ is a real-function defined for $t>0$ and it decays rapidly at ∞ (faster than any power of t) and blows up at most like a polynomial near 0 (is $O\left(t^{-C}\right)$ as $t \rightarrow 0$), then the Mellin transform is

$$
\mathcal{M}(\varphi)(s):=\int_{0}^{\infty} \varphi(t) t^{s-1} d t
$$

This converges absolutely and locally uniformly for $\operatorname{Re}(s)>C$.
A special case is when

$$
\varphi(t)=\sum_{n \geq 1} c_{n} e^{-n t}
$$

where the c_{n} are growing polynomially. Then we find

$$
\mathcal{M}(\varphi)(s)=\int_{0}^{\infty} \sum_{n \geq 1} c_{n} e^{-n t} t^{s-1} d t=\int_{0}^{\infty} e^{-t} t^{s-1} d t \sum_{n \geq 1} c_{n} n^{-s}=\Gamma(s) \sum_{n \geq 1} c_{n} n^{-s}
$$

That is, the Mellin transform is $\Gamma(s)$ times the Dirichlet series for $\left\{c_{n}\right\}$.
We also need the following general principle. Suppose that

$$
\varphi\left(\frac{1}{t}\right)=\sum_{j=1}^{J} A_{j} t^{\lambda_{j}}+t^{h} \varphi(t), \quad h, A_{j}, \lambda_{j} \in \mathbb{C}
$$

Then by writing the Mellin transform as $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$ and letting $t \mapsto 1 / t$ in the first integral gives (for $\operatorname{Re}(s) \gg 0)$
$\mathcal{M}(\varphi)(s)=\int_{1}^{\infty}\left(\sum_{j=1}^{J} A_{j} t^{\lambda_{j}}+t^{h} \varphi(t)\right) t^{-s-1} d t+\int_{1}^{\infty} \varphi(t) t^{s-1} d t=\sum_{j=1}^{J} \frac{A_{j}}{s-\lambda_{j}}+\int_{1}^{\infty} \varphi(t)\left(t^{s}+t^{h-s}\right) \frac{d t}{t}$.
The integral \int_{1}^{∞} is clearly invariant under $s \mapsto h-s$. For the sum in the last display, apply the expansion formula of $\varphi(1 / t)$ twice to find that for each j, there is a j^{\prime} with $\lambda_{j^{\prime}}=h-\lambda_{j}, A_{j}^{\prime}=-A_{j}$.

This gives that $\mathcal{M}(\varphi)(s)$ analytically continues to a meromorphic function in \mathbb{C} with poles at $s=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{J}$.
Example. In the case of the Riemann zeta function, let $\varphi(t)=\sum_{n \geq 1} e^{-\pi n^{2} t}$ (this is basically a theta function minus its constant term). Then we have

$$
\mathcal{M}(\varphi)(s)=\pi^{-s} \Gamma(s) \zeta(2 s),
$$

and the general principle holds with $h=1 / 2, J=2, \lambda_{1}=0, \lambda_{2}=1 / 2, A_{2}=-A_{1}=1 / 2$. This follows by using the modularity of the theta function which we will shortly study (this is a theta function minus a constant term on the imaginary axis at $\tau=$ it, and letting $t \mapsto 1 / t$ corresponds to looking at the modular inversion symmetry). Rewriting the resulting functional equation gives the following.
Theorem (Riemann). The completed zeta function $\xi(s):=\frac{1}{2} \pi^{-\frac{s}{2}} s(s-1) \Gamma\left(\frac{s}{2}\right) \zeta(s)$ is entire and satisfied the functional equaion

$$
\xi(s)=\xi(1-s)
$$

Alternatively, $\zeta(s)$ has an analytic continuation to \mathbb{C} with a simple pole just at $s=1$, and with the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

Example. If $f \in M_{k}$, let $\varphi(t)=f(i t)-a_{0}=\sum_{n \geq 1} a_{n} e^{-2 \pi n t}$. This is small at ∞, and we compute

$$
\varphi\left(\frac{1}{t}\right)=f\left(\frac{-1}{i t}\right)-a_{0}=(i t)^{k} f(i t)-a_{0}=(-1)^{\frac{k}{2}} t^{k} \varphi(t)+(-1)^{\frac{k}{2}} a_{0} t^{k}-a_{0}
$$

Then we have

$$
\mathcal{M}(\varphi)(s)=(2 \pi)^{-s} \Gamma(s) L(f, s)
$$

and the above expansion implies that $L(f, s)$ has an analytic continuation to \mathbb{C} which is entire if $f \in S_{k}$, and has poles at $s=0, k$ if f is non-cuspidal. Since this "completed" L-function has poles at $0, k$, the original L-function

$$
L(f, s)=(2 \pi)^{s} \frac{\mathcal{M}(\varphi)(s)}{\Gamma(s)}
$$

has a pole just at $s=k$ (the pole of the completed L-function at $s=0$ is cancelled by the simple zero at $s=0$ of $1 / \Gamma(s)$). Further, we have the functional equation

$$
(2 \pi)^{-s} \Gamma(s) L(f, s)=(-1)^{\frac{k}{2}}(2 \pi)^{s-k} \Gamma(k-s) L(f, k-s)
$$

