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When the Zetas fill the sky, Will our
leaders tell us why? Fully loaded
satellites, Will conquer nothing but
our minds.

— Matthew Bellamy

Given
∑

n≥0 anq
n = f ∈ Sk, we define the L-function attached to f as the Dirichlet

series

L(f, s) :=
∑
n≥1

an
ns

Re(s)� 0.

The nicest case is when f is a Hecke eigenform. Then the coefficients are multiplicative,
and the L-function has an Euler product. To see this, let’s look at the prototypical
example.

Example. The Riemann zeta function is

ζ(s) :=
∑
n≥1

1

ns
(Re(s) > 1).

Euler noticed that it factorizes as

ζ(s) =
∏
p

1

1− p−s
,

where the product is over the set of prime numbers. This can be though of as the “analytic
version of the Fundamental Theorem of Arithmetic.” Namely, it is just a generating-
function encoding of the fact that all integers factor uniquely as products of primes.

The same type of Euler product, a product of similar terms over primes, holds for any
Dirichlet series

∑
n≥1 bnn

−s whenever the bn are multiplicative. In our case, we have

L(f, s) =
∏
p

(
1 +

ap
ps

+
ap2

p2s
+ . . .

)
.
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This only used multiplicativity. But we also have the Hecke relations for prime powers
too! Suppose that apr are a sequence satisfying Hecke relations at prime powers, and
consider the generating function

Ap :=
∑
r≥0

aprx
r.

Then

Ap = 1 +
∑
r≥0

apr+1xr+1 = 1 +
∑
r≥0

apaprx
r+1−

∑
r≥1

pk−1apr−1xr+1 = 1 + apxAp− pk−1x2Ap.

Solving yields

Ap =
1

1− apx+ pk−1x2
.

Letting x = p−s and plugging in our previous formula gives.

Proposition. If f is a Hecke eigenform in Sk, then L(f, s) has the following Euler
product:

L(f, s) =
∏
p

1

1− app−s + pk−1−2s
.

Example. We can also define L-functions for non-cusp forms. The term n = 0 in the
Dirichlet series won’t make sense, so we just ignore it and still define for f ∈Mk

L(f, s) :=
∑
n≥1

af (n)

ns
.

We’ve seen that the coefficients of Eisenstein series involve zeta values, so it will not be
a surprise to find that L(Gk, s) is related to ζ(s). Specifically, we work with the Euler
product computation above and similarly look at

apr = σk−1(p
r) =

p(r+1)(k−1) − 1

pk−1 − 1
,

where here we used the geometric series. Then as above, we compute

Ap =
∑
r≥0

p(r+1)(k−1) − 1

pk−1 − 1
xr =

1

(1− pk−1x)(1− x)
.

Thus, we obtain

L(Gk, s) =
∏
p

1

1− σk−1(p)p−s + pk−1−2s
=
∏
p

1

1− pk−1−2s
·
∏
p

1

1− p−s
= ζ(s−k+1)ζ(s).

We now look at the region of convergence of our definitions of modular L-functions.
When Dirichlet series converge absolutely, they do so in a right half-plane. This is
because |n−s| depends only on Re(s). The region depends on the growth rate of the
coefficients an. We’ve shown that for a cusp form, the coefficients satisfy the asymptotic
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bound an = O(n
k
2 ) (which can be improved by the work of Deligne). This is enough to

guarantee that L(f, s) converges for Re(s) > k
2

+ 1.
As Riemann showed holds for ζ(s), Hecke showed that these L-functions have analytic

continuations to the whole complex plane, and have a functional equation. These follow
from properties of the Mellin transform. Recall that the Gamma function is

Γ(s) :=

∫ ∞
0

ts−1e−tdt, (Re(s) > 0).

This extends the factorial function via the relation Γ(n + 1) = n! for n ∈ Z≥0. This is
because just as for n!, we have the relation Γ(s+ 1) = sΓ(s). This gives a continuation
of Γ(s) to a meromorphic function on C with poles at Z≤0. Similarly, for all ζ and
L-functions, the analytic continuation will come from a functional equation.

The Gamma function is the prototypical Mellin transform. More generally, if ϕ(t) is
a real-function defined for t > 0 and it decays rapidly at ∞ (faster than any power of t)
and blows up at most like a polynomial near 0 (is O(t−C) as t → 0) , then the Mellin
transform is

M(ϕ)(s) :=

∫ ∞
0

ϕ(t)ts−1dt.

This converges absolutely and locally uniformly for Re(s) > C.
A special case is when

ϕ(t) =
∑
n≥1

cne
−nt,

where the cn are growing polynomially. Then we find

M(ϕ)(s) =

∫ ∞
0

∑
n≥1

cne
−ntts−1dt =

∫ ∞
0

e−tts−1dt
∑
n≥1

cnn
−s = Γ(s)

∑
n≥1

cnn
−s.

That is, the Mellin transform is Γ(s) times the Dirichlet series for {cn}.
We also need the following general principle. Suppose that

ϕ

(
1

t

)
=

J∑
j=1

Ajt
λj + thϕ(t), h, Aj, λj ∈ C.

Then by writing the Mellin transform as
∫∞
0

=
∫ 1

0
+
∫∞
1

and letting t 7→ 1/t in the first
integral gives (for Re(s)� 0)

M(ϕ)(s) =

∫ ∞
1

(
J∑
j=1

Ajt
λj + thϕ(t)

)
t−s−1dt+

∫ ∞
1

ϕ(t)ts−1dt =
J∑
j=1

Aj
s− λj

+

∫ ∞
1

ϕ(t)
(
ts + th−s

) dt
t
.

The integral
∫∞
1

is clearly invariant under s 7→ h − s. For the sum in the last display,
apply the expansion formula of ϕ(1/t) twice to find that for each j, there is a j′ with
λj′ = h− λj, A′j = −Aj.
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This gives that M(ϕ)(s) analytically continues to a meromorphic function in C with
poles at s = λ1, λ2, . . . , λJ .

Example. In the case of the Riemann zeta function, let ϕ(t) =
∑

n≥1 e
−πn2t (this is

basically a theta function minus its constant term). Then we have

M(ϕ)(s) = π−sΓ(s)ζ(2s),

and the general principle holds with h = 1/2, J = 2, λ1 = 0, λ2 = 1/2, A2 = −A1 = 1/2.
This follows by using the modularity of the theta function which we will shortly study
(this is a theta function minus a constant term on the imaginary axis at τ = it, and
letting t 7→ 1/t corresponds to looking at the modular inversion symmetry). Rewriting
the resulting functional equation gives the following.

Theorem (Riemann). The completed zeta function ξ(s) := 1
2
π−

s
2 s(s − 1)Γ

(
s
2

)
ζ(s)

is entire and satisfied the functional equaion

ξ(s) = ξ(1− s).
Alternatively, ζ(s) has an analytic continuation to C with a simple pole just at s = 1,
and with the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Example. If f ∈ Mk, let ϕ(t) = f(it) − a0 =
∑

n≥1 ane
−2πnt. This is small at ∞, and

we compute

ϕ

(
1

t

)
= f

(
−1

it

)
− a0 = (it)kf(it)− a0 = (−1)

k
2 tkϕ(t) + (−1)

k
2 a0t

k − a0.

Then we have
M(ϕ)(s) = (2π)−sΓ(s)L(f, s),

and the above expansion implies that L(f, s) has an analytic continuation to C which is
entire if f ∈ Sk, and has poles at s = 0, k if f is non-cuspidal. Since this “completed”
L-function has poles at 0, k, the original L-function

L(f, s) = (2π)s
M(ϕ)(s)

Γ(s)

has a pole just at s = k (the pole of the completed L-function at s = 0 is cancelled by
the simple zero at s = 0 of 1/Γ(s)). Further, we have the functional equation

(2π)−sΓ(s)L(f, s) = (−1)
k
2 (2π)s−kΓ(k − s)L(f, k − s).


