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Mankind is not a circle with a single
center but an ellipse with two focal
points of which facts are one and
ideas the other.

Victor Hugo

Before describing modular forms in more detail, we will discuss the related theory of
elliptic functions. Modular forms as we will usually describe them are also called elliptic
modular forms due to their connection to elliptic functions. In turn, this term comes
from ellipses, specifically from earlier study of arc lengths of ellipses.

We start with a few basic definitions.

Definition. A lattice in C is a set of the form Λ = 〈ω1, ω2〉 = {mω1 +nω)2 : m,n ∈ Z},
where ω1, ω2 6= 0 and ω1/ω2 6∈ R.

The condition that ω1/ω2 6∈ R is needed as otherwise Λ would be contained in a line.
This means that the quotient is a point in the lower or upper half plane, which is our
first hint of why modular forms live on H. Here are a few pictures.
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Definition. The standard choice of fundamental domain for Λ is

Π = ΠΛ = {αω1 + βω2 : 0 ≤ α, β < 1}.

The point is that every element of C is equivalent to exactly one point in Π up to
translation by points in Λ. Some authors take a different definition with the dashed
lines part, namely with whether points on the boundary of Π are included or not. It
wouldn’t then satisfy this uniqueness property, but it often doesn’t matter if its only off
on a measure 0 set. We can now make our key definitions.

Definition. A function f : C→ C is doubly periodic (with respect to Λ) if

f(z + λ) = f(z)

for all λ ∈ Λ and for all z ∈ C.

Definition. A function on C is elliptic if it is meromorphic and doubly periodic. The
set of all elliptic functions for Λ (really its a field) is denoted EΛ.

Remarks. (1) If you haven’t seen the word meromorphic before, here is a brief ex-
planation. Holomorphic functions are nothing but the complex version of dif-
ferentiable functions, except that now they are automatically smooth, and even
analytic (which is very false for real-differentiable functions). Meromorphic func-
tions are a generalization of holomorphic functions. They are the same, but they
may have a discrete set of poles, points where the function blows up. At these
points, it blows up like a rational function blows up. For example, any poly-
nomial is a holomorhpic function, and any rational function is a meromorphic
function, with poles where the denominator has a root. We say, for instance,
that 1

(z−1)(z−2)2
is meromorphic with a simple pole at z = 1 and a double pole

at z = 2.
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(2) Even the meromorphic condition can be dropped. There are very nice examples
which have slightly non-holomorphic functions, like a holomorphic function plus
Im(z), which have had a lot of big applications in recent years related to BSD
and moonshine.

Exercise 1. If you haven’t taken complex analysis, look through the examples provided
throughout these notes in detail and look up the topics mentioned. Of course, let me
know if you have any questions! We will take a computational approach to this, and
the complex analysis covered in this lecture is enough for us for the remainder of the
semester.

The following is used a lot in elliptic functions theory.

Key Result 1. If f ∈ EΛ has no pole in Π, then f ∈ C. That is, any holomorphic
elliptic function is a constant.

Proof. The closure Π is compact. Thus, such an f is bounded on Π. But all values
of f on C are “repeats” of these values. Thus, f is bounded on C. By Liouville’s
Theorem, f is a constant (if you haven’t seen Liouville’s Theorem, this is precisely its
statement!). �

We also need the following.

Key Result 2. Suppose f ∈ EΛ has no poles on the boundary ∂Π (or, if need be, a
slightly shifted parallelogram, like z0 + Π). Then the sum of residues of f in Π is 0.

Proof. There is an important fact from complex analysis called the Residue Theorem.
If a meromorphic function has a pole at z = a, then it has a Laurent expansion of
the form

∞∑
n=−m

an(z − a)m

around z = a, where m is the order of the pole. This is just like a Taylor series
expansion, but some powers are negative. The residue is the value a−1. The Residue
Theorem states that for any meromorphic function and any simply closed curve traversed
counterclockwise, we have

∑
a is a pole of f on the inside of the curve

(
Residue of f at z = a

)
=

1

2πi

∫
γ

f(z)dz.

For instance, we have the following simple examples.
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If you haven’t seen the Residue Theorem, you should read about it, as its very useful
for many situations (even real variable integrals), and we will be returning to it later.

Going back to the situation of elliptic functions, we integrate around the boundary of
the fundamental domain. The residue theorem then says that∑

(residues inside Π) =
1

2πi

∫
∂Π

f(z)dz.

The integral is zero. This is because the integrals over opposite sides cancel as the
values are equal by double periodicity and the orientations are opposite (see the following
picture). This completes the proof.

�
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Corollary. Non-constant elliptic functions have at least two poles (counting multiplicity)
in a fundamental domain.

Proof. We already saw that non-constant elliptic functions have at least one pole. If
there is only one pole, counted with multiplicity, then this is a simple pole. But since
the sum of residues is zero, the residue of this simple pole is 0. But then the Laurent
expansion near that point is 0 · (z − a)−1 + a0 + . . . = a0 + O(z − a). Then there is no
pole at z = a after all. �

Remark. It is possible for mildly non-holomorphic elliptic functions to have just 1 pole!

Finally, we have the following.

Key Result 3. If f ∈ EΛ has no zeros or poles on ∂Π, then∑
( orders of zeros in Π) =

∑
(orders of poles in Π).

Remark. We have defined the order of a pole. If you haven’t seen it, then the order of
the zero at z = a is as follows. If f(a) = 0, then it has a Taylor expansion near a of the
shape f(z) =

∑
n≥m am(z − a)m. If am 6= 0, then we say that m is the order of the zero.

Proof. We use the main idea behind what’s known in complex analysis as the argument
principle. The main observation is that the log derivative, f ′/f , has simple poles
wherever f has a zero or a pole, and the residues of the log derivative are equal to the
order of the zero or pole. The residue is +m if the zero is of order m, and the residue is
−m is there is a pole of order m. The derivative of an elliptic function for Λ is still in
EΛ, and a quotient of elliptic functions is also elliptic. Thus, f ′/f ∈ EΛ. Thus, by Key
Result 2, and the observation we have∑

(orders of zeros of f)−
∑

(orders of poles of f) =
∑

(residues of f) = 0.

This is equivalent to the claim. �

Remark. There is a convenient term for zeros and poles which I may use in the future.
The set of points where a function has either a zero or a pole is called its divisor.

Exercise 2. Check that the set EΛ is closed under addition, multiplication, division, and
quotients. In particular, EΛ is a field, and f ′/f ∈ EΛ for any f ∈ EΛ.

Exercise 3. If you haven’t seen it before, check the argument principle idea. That is,
show that the log derivative has simple poles exactly at points in the divisor of f , and
that the residues are the order or the zero or pole of f . As a hint, suppose that f has
a zero of order m at a. Then write f(z) = (z − a)mg(z) for some function g(z) with
g(a) 6= 0. Now compute the residue and pole order of f ′/f at a using this formula.

In short, elliptic functions are natural extensions of periodic functions with strong
conditions on their divisors. This makes comparing them easy. For instance, if I claim
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that two elliptic functions are equal, then all I have to do to check that is take the
difference and show that the poles cancel out.

At this point, one could ask: Do natural elliptic functions exist? The answer is yes.
Next time, we’ll give some natural examples and describe some of their properties. After
that, we will describe where modular forms come into the picture.

Exercise 4. Can you define a non-trivial example of an elliptic function without looking
it up? What would you try to define a doubly periodic function?


