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There are two facts about the
distribution of prime numbers of
which I hope to convince you so
overwhelmingly that they will be
permanently engraved in your hearts.
The first is that, despite their simple
definition and role as the building
blocks of the natural numbers, the
prime numbers grow like weeds
among the natural numbers, seeming
to obey no other law than that of
chance, and nobody can predict
where the next one will sprout. The
second fact is even more astonishing,
for it states just the opposite: that
the prime numbers exhibit stunning
regularity, that there are laws
governing their behavior, and that
they obey these laws with almost
military precision

Don Zagier

1. Hecke operators: First definition

We now return to the multiplicative properties of τ(n). There is a family of operators,
called Hecke operators:

Tm : Mk →Mk, m = 2, 3, . . . .

We write the action of Tm on a form f as either Tm(f) or f |Tm. The action of Hecke
operators can be defined via the action on Fourier expansions:(∑

n

anq
n

)∣∣Tm =
∑
n

bnq
n

where
bn :=

∑
r>0

r|(m,n)

rk−1amn
r2
.

This seems like a strange definition, and its not obvious that it preserves modularity.
But we’ll see more motivation soon. As a corollary of this formula, we have

Tm : Sk → Sk,

since a0 = 0 implies that b0 = 0 directly from the function. Thus, as S12 has dimension
1, ∆(τ) is an eigenfunction of each Tm. Suppose that the eigenvalue of Tm is λm. Then

[q1](f |Tm) = b1 =
∑
r>0

r|(m,1)=1

rk−1am
r2

= am = [q1](λmf) = λma1.
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Moreover, coprime Hecke operators commute, and satisfy a strict relationship. Specif-
ically

Tmn = TmTn = TnTm, (m,n) = 1.

Thus, if f is a Hecke eigenform (eigenform of all Hecke operators) then for (m,n) = 1
we have f |Tmn = λmnf = f |Tm|Tn = λmλnf and so λmn = λmλn. That is, the sequence
of eigenvalues λn is multiplicative. In particular, taking f = ∆ gives

λmn = τ(mn) = λmλn = τ(m)τ(n).

So assuming the claim on coprime Hecke operators implies Ramanujan’s conjecture that
τ(n) is multiplicative, and provides a solid theoretical explanation!

Before moving forward, we’ll also note that Eisenstein series are eigenforms. In fact,
the coefficients of a modular form are multiplicative if and only if the form is an eigen-
form. The coefficients σk−1(n) are the summatory function (sum over divisors) of nk. A
basic exercise in elementary number theory shows that since nk is clearly multiplicative
so is its summatory function σk−1(n). Thus, we can break up M12 = C · E12 ⊕ C · ∆
which is a basis of eigenforms. We’ll see that Sk always has a basis of eigenforms, and
hence Mk always will too.

2. New forms from old

Before giving a more theoretical definition of Hecke operators, we study the generally
important question of how to build new modular forms from old. We have several
methods.

(1) As we’ve seen, we can add, multiply, divide, and subtract forms.
(2) We have differentiation. We’ve seen we can use the Serre derivative to stay in

the space of holomorhpic modular forms, or leave holomorphic forms using the
raising operator. Thanks to Bol’s identity, we also saw that Dk−1 maps from
M !

2−k →M !
k .

There are also the Rankin-Cohen brackets. Given f ∈ Mk, g ∈ M`, the
n-th bracket is:

[f, g]n =
∑
r,s≥0
r+s=n

(−1)r+s
(
k + n− 1

s

)(
`+ n− 1

r

)
DrfDsg ∈Mk+`+2n

For example,

[f, g]0 = fg,

and

[f, g]1 = `Dfg − kfDg
is a kind of weighted “product rule”.

Exercise 1. Show directly that [f, g]1 ∈Mk+`+2.
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How does the proof of modularity go in general? We saw before what D does
when acting on f(γτ). By a similar calculation and induction, we find

Dnf(γτ) =
n∑
i=0

(
n

r

)
(k + r)n−r
(2πi)n−r

cn−r(cτ + d)k+n+rDrf(τ)

Exercise 2. This is kind of a tricky one, but illustrates what’s going on, and
is useful to at least read over. The general philosophy of studying sequences of
things by sticking them in generating functions and seeing the symmetries of that
thing is very powerful. We follow the exposition on Cohen-Kusnetsov series in
Zagier’s chapter of the 1-2-3 of Modular Forms. Show then that the generating
function (for z ∈ C)

f̃(τ, z) :=
∑
n≥0

Dnf(τ)

n!(k)n
zn

which satisfies (what’s nearly a Jacobi form transformation, as we may see later)

f̃

(
aτ + b

cτ + d
,

z

(cτ + d)2

)
= (cτ + d)ke

cz
(2πi)(cτ+d) f̃(τ, z).

The inductive formula above may seem familiar; this whole thing can be recast as
a generating function of iterated raising operators (see Zagier’s chapter). Now,
for a modular form g of weight `, check that

f̃(τ,−z)g̃(τ, z) =
∑
n≥0

[f, g]nz
n

(k)n(`)n

gets multiplied by (cτ + d)k+` when (τ, z) 7→ (γτ, z/(cτ + d)2). Check that this
implies the modularity of [f, g]n.

So differentiation is a natural operation. It turns out that Rankin-Cohen
brackets generate all possible operators like this.

(3) The other main way of generating new modular forms is slashing with matrices
(possibly with determinant not equal to one). For this, we need the general
definition of the slash operator for matrices with general positive determinant:

f |γ(τ) := det(γ)
k
2 (cτ + d)−kf(τ).

We also need modular forms on subgroups. Usually we stick to congruence
subgroups. Let

Γ(N) := {( a bc d ) ∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)}
be the kernel of reduction mod N (that is, the kernel of the map from SL2(Z) to
SL2(Z/nZ) given by reducing entries mod N).

Remark. Note that Γ(1) = SL2(Z).



4 LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

Definition. A congruence subgroup of level N is a subgroup of Γ(1) con-
taining Γ(N). A modular form on a subgroup Γ of level N (also referred to as
a modular form of level N) is a function which is holomorphic on H, such that
f |kγ = f for all γ ∈ Γ, and which is “holomorphic at the cusps”. Explicitly, this
means that for all γ′ ∈ Γ(1), there is an expansion of the shape

f |γ′(τ) =
∑
n≥0

anq
n
N .

It is a cusp form if each of these expansions has a0 = 0. The space of modular
forms of weight k on Γ is denoted Mk(Γ), and the space of cusp forms as Sk(Γ).

Remark. We have Γ(N ′) ⊆ Γ(N) if N ′ is a multiple of N . So a level N group
is also a level N ′ group. Thus, a modular form of level N is also a modular form
of level aN ′ for any a ≥ 1.

What about the minimal possible level of a form? We will discuss this later.
Modular forms on Γ(N) are more difficult to study than on Γ(1). The theory

is simpler if we stick to a nice congruence subgroups of level N like

Γ0(N) := {( ∗ ∗0 ∗ ) (mod N)} .

Since these are so common to study, we also write Mk(Γ0(N)) = Mk(N). The
next nicest class of congruence subgroups are those of the form

Γ1(N) := {( 1 ∗
0 1 ) (mod N)} .

Modular forms on these groups are nearly as nice as those for Γ0(N). The reason
is that there is a decomposition

Mk(Γ1(N)) = ⊕χMk(Γ0(N), χ)

into spaces of modular forms with Nebentypus, which just means that the
automorphy factor is twisted by a Dirichlet character χ.

Why is Γ0(N) so nice? We have T ∈ Γ0(N), but its not in Γ(N). However,
TN is, which is why in the above definition of holomorphicity at the cusps, the
expansions were in terms of q

1
N ; we only have invariance under τ 7→ τ + N in

general.
Why are congruence subgroups so special?

Conjecture. Only congruence subgroup modular forms can have integral (or
bounded denominator in Q) coefficients.

So if you want something that counts something like partitions, you could
only possibly find congruence subgroups. However, there are deep applications
of more general modular forms to geometry, though they’re less well-understood.
An illustration of how much these groups encode is given by the following.
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Theorem (Belyi). Every smooth irreducible projective plane curve over Q is
isomorphic to Γ\H for some subgroup Γ ≤ SL2(Z).

As the level grows, the groups and their modular forms get more complicated.
The cusps for a group are the equivalence classes of P1(Q) = Q ∪ {i∞} under
the action of Γ. Modular forms have to be bounded at all of these cusps, and
cusp forms have to vanish at all of these cusps. For Γ(1), there is only one cusp,
as it acts transitively on P1(Q) (you can get from any point to any other point
in the set with a Möbius transformation in Γ(1)).

If f ∈ Mk(Γ), then slashing with γ ∈ Γ doesn’t do anything. Slashing with
more general things doesn’t return the same function, but instead returns a new
modular form.

Proposition. Let Γ′ ≤ Γ(1) be a congruence subgroup. For α ∈ GL+
2 (Q) (a

rational matrix with positive determinant, which thus acts on H), set

Γ′′ := α−1Γ′α ∩ SL2(Z).

Then the following are true.
(a) Γ′′ is a congruence subgroup.
(b) If f ∈ Mk(Γ

′), then f |α ∈ Mk(Γ
′′). Moreover, if f ∈ Sk(Γ

′), then f |α ∈
Sk(Γ

′′).

Proof. Multiplying α by a constant doesn’t change the slash action, so without
loss of generality, let α ∈ GL+

2 (Z). We claim that if D = det(α), then

Γ′ ⊇ Γ(N) =⇒ α−1Γ′α ⊇ Γ(ND).

Indeed, if γ ∈ Γ(ND), then γ = 1 + NDβ for β ∈ Γ(1). We need to show that
γ ∈ α−1Γ′α, i.e., that Γ′ contains

αγα−1 = α(1 +NDβ)α−1 = 1 +NDαβα−1.

Now α′ = Dα−1 is an integer matrix, and det(αγα−1) = det(γ) = 1. Moreover,

αγα−1 = 1 +Nαβα′ =⇒ αγα−1 ∈ Γ(N) ⊆ Γ′,

proving (1).
For (2), the modularity transformations are clear as

(f |α)|(α−1γ′α) = f |(αα−1)|γ′|α = (f |γ′)|α = f |α.

We have to show that if f is holomorphic at the cusps, then so is f |α, and
similarly, that if f vanishes at the cusps, then so does f |α.

Exercise 3. Show that there exists γ0 ∈ Γ(1) so that γ−1α = ( a b0 d ) with a, d ∈ N.
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Using this exercise, and the assumption that f has an appropriate Fourier
expansion at the cusps as discussed in the definition of holomorphicity at cusps,

f |α = (f |γ0)| ( a b0 d ) = (ad)
k
2 d−k

∑
n≥0

ane

(
n

N

aτ + b

d

)

=
(a
d

) k
2
∑
n≥n0

ane

(
bn

dN

)
e
(anτ
Nd

)
=
(a
d

) k
2
∑
n≥n0

ane

(
bn

dN

)
q
an
Nd

has the right shape of a Fourier expansion. This shape also implies that cuspi-
dality is also preserved. �

Important special cases

As examples, we have the V -operator

f |Vm = m−
k
2 f
∣∣∣ (m 0

0 1

)
= f(mτ)

and the U-operator

f |Um = m
k
2
−1

m∑
j=1

f
∣∣∣ (1 j

0 m

)
.

On Fourier expansions, we have.∑
n

anq
n|Vm =

∑
n

anq
mn,

∑
n

anq
n|Vm =

∑
n

amnq
n.

The expansion is clear for Vm, and for Um, we find

f |
(
1 j
0 m

)
(τ) = m

k
2m−kf

(
τ + j

m

)
= m−

k
2

∑
n

ane

((
τ + j

m

)
n

)
= m−

k
2

∑
n

ane

(
jn

m

)
q
n
m .

Thus,

f |Um = m
k
2
−1

m∑
j=1

m−
k
2

∑
n

ane(jn/m)qn/m = m−1
∑
n

anq
n/m

m∑
j=1

e(jn/m).

This exponential sum is 0 if m - n, and m if m|n. Thus, this becomes∑
m|n

anq
n/m =

∑
n

amnq
n.

On spaces, we have from the above that Um, Vm map Mk(N) to Mk(mN). So
the level goes up, but not so much. But sometimes you’re lucky!

Exercise 4. Let f ∈Mk(4) with k even. Show that f |U2 ∈Mk(2). Further show
if an = 0 with n ≡ 2 (mod 4), then f |U4 ∈Mk(1) = Mk.
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This little exercise has important uses; it naturally occurs when studying
Rankin-Cohen brackets of two half-integral weight modular forms, and its useful
in the important Eichler-Selberg trace formula (see Zagier’s “Intro to modular
forms” in From Number Theory to Physics).
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