MODULAR FORMS LECTURE 16: THE DEDEKIND ETA FUNCTION

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

Je le vois, mais je ne le crois pas! (I see it, but I don't believe it!)

Cantor to Dedekind on his proof that an interval has the same cardinality
as a square
We have seen that $\Delta=q(q)_{\infty}^{24}$ is a cusp form of weight 12 . What if we didn't include the 24 ? Then we would have the Dedekind eta function:

$$
\eta(\tau):=q^{\frac{1}{24}}(q)_{\infty}
$$

If this were modular, we'd expect the weight to be $1 / 2$. But, no modular forms of weight $1 / 2$ exist under our definition! Here's why.

Let $\sqrt{ } \cdot$ be a principal branch of the square root. In order for $f(\gamma \tau)=j(\gamma ; \tau) f(\tau)$ to make sense, we saw that j must be an automorphy factor:

$$
j\left(\gamma_{1} \gamma_{2} ; \tau\right)=j\left(\gamma_{1} ; \gamma_{2} \tau\right) j\left(\gamma_{2} ; \tau\right)
$$

The "naive guess" in half integral weight is $j(\gamma ; \tau)=(c \tau+d)^{\frac{k}{2}}$, where k is odd. This is not an automorphy factor. Consider the matrices

$$
\gamma_{1}:=\left(\begin{array}{cc}
4 & 3 \\
-3 & -2
\end{array}\right) \quad \gamma_{2}:=\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right) .
$$

Then the automorphy factor relation implies that

$$
\sqrt{3 \tau-2}=\sqrt{\frac{-3 \tau}{1-3 \tau}-2} \cdot \sqrt{1-3 \tau}
$$

The square of this relation holds, so the k-th power holds up to a sign. But its the wrong sign. The right hand side is a product of square roots of things in the lower half plane:

$$
\text { RHS } \in \sqrt{\mathbb{H}^{-}} \sqrt{\mathbb{H}^{-}} \Longrightarrow \text { RHS } \in \text { 4th quadrant } \cdot \text { 4th quadrant. }
$$

But the left hand side is in the first quadrant, as $3 \tau-2 \in \mathbb{H}$. So in fact the relation is off by a factor of -1 .
Remark. Once we talk about congruence subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$, one can check by a similar calculation that the condition fails for those too.

But there is a small correction with roots of unity to fix things. This is

$$
j(\gamma ; \tau):=\left(\frac{c}{d}\right) \varepsilon_{d}^{-1} \sqrt{c \tau+d} .
$$

Here, $\left(\frac{c}{d}\right)$ is a Kronecker character (this is a basic function from elementary number theory that only takes the values $0, \pm 1,0$ exactly when $(c, d) \neq 1)$ and

$$
\varepsilon_{d}:=\left\{\begin{array}{lll}
1 & \text { if } d \equiv 1 & (\bmod 4) \\
i & \text { if } d_{1} \equiv 3 & (\bmod 4)
\end{array}\right.
$$

This is an automorphy factor for the level 4 congruence subgroup $\Gamma_{0}(4)$, where

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: N \mid c\right\} .
$$

Half-integral weight modular forms using this automrphy factor are only defined on levels divisible by 4 . This allows us to make the following.
Definition. A modular form of weight $k / 2$ with k odd on $\Gamma_{0}(4 N)$ is a function $f: \mathbb{H} \rightarrow \mathbb{C}$ that is is holomorphic on \mathbb{H} and at infinity and such that for all $\gamma \in \Gamma_{0}(4 N)$ we have

$$
f(\gamma \tau)=j(\gamma ; \tau)^{k} f(\tau)
$$

It turns out that $\eta(\tau)$ is a modular form of weight $1 / 2$ on $\mathrm{SL}_{2}(\mathbb{Z})$, but we have to twist the transformations by roots of unity to get what's known as a multiplier system. Non-integral powers of q in the Fourier expansion translate to non-translation invariance. But that's an easy fix. The $q^{\frac{1}{24}}$ just gives us

$$
\eta(\tau+1)=e(1 / 24) \eta(\tau)
$$

where $e(x):=e^{2 \pi i x}$. It turns out that

$$
\eta(-1 / \tau)=\sqrt{\frac{\tau}{i}} \eta(\tau)
$$

To check this, simply take the \log derivative as we did for Δ to find

$$
\frac{\eta^{\prime}}{\eta}=\frac{i}{4 \pi} G_{2} .
$$

Since $G_{2}(-1 / \tau)=\tau^{2} G_{2}(\tau)-2 \pi i \tau$, with $F:=\eta^{\prime} / \eta$, we have

$$
f(-1 / \tau) \cdot \frac{1}{\tau^{2}}-f(\tau)-\frac{1}{2 \tau}=0
$$

For $v>0$, set

$$
g(v):=\frac{\eta(i / v)}{\eta(i v) \sqrt{v}} .
$$

Then

$$
\frac{g^{\prime}(v)}{g(v)}=f(i / v)-\frac{i}{v^{2}} \cdot(-i)-f(i v)-\frac{1}{2 v}=0 \Longrightarrow \eta(i / v)=C \sqrt{v} \eta(i v)
$$

for some C. For $v=1$, we have $c=1$. Thus, the inversion property holds on the imaginary axis intersect \mathbb{H}. By the Identity Theorem from complex analysis, this holds everywhere on \mathbb{H}.

Finally, you can combine the relations at S and T to get the full multiplier system for $\eta(\tau)$. We won't prove this, but it involves Dedekind sums. Define the sawtooth function

$$
((x)):= \begin{cases}x-\lfloor x\rfloor-\frac{1}{2} & x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & x \in \mathbb{Z}\end{cases}
$$

Then the Dedekind sum is

$$
s(a, b):=\sum_{n}\left(\left(\frac{n}{b}\right)\right)\left(\left(\frac{a n}{b}\right)\right) .
$$

Then the full transformation behavior for $\eta(\tau)$ on $\mathrm{SL}_{2}(\mathbb{Z})$ is

$$
\eta(\gamma \tau)=\varepsilon(\gamma)(c \tau+d)^{\frac{1}{2}} \eta(\tau)
$$

where $\varepsilon(\gamma)$ is the multiplier system

$$
\varepsilon(\gamma)= \begin{cases}e(b / 24) & \text { if } c=0, d=1, \\ e\left(\frac{a+d}{24 c}-\frac{s(d, c)}{2}-\frac{1}{8}\right) & \text { if } c>0 .\end{cases}
$$

