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I remember once going to see him
when he was ill at Putney. I had
ridden in taxi cab number 1729 and
remarked that the number seemed to
me rather a dull one, and that I
hoped it was not an unfavorable
omen. “No”, he replied, “it is a very
interesting number; it is the smallest
number expressible as the sum of two
cubes in two different ways.”

Hardy, about a visit to Ramanujan

1. The product formula for ∆

We begin with an alternate representation of the modular discriminant function. For
now, we’ll take this as a new definition, but we’ll soon see that its the same as before.
Set

∆(τ) := q
∏
n≥1

(1− qn)24 = q · (q)24∞,

where

(a; q)n := (a)n =
n−1∏
j=0

(1− aqj)

is the q-Pochhammer symbol. In particular, note that ∆ has no zeros on H, since
its an infinite product and the n-th term in the product is 0 if and only if qn = 1.
Thus, the zeros are precisely the set of τ where q = 0 or q is a root of unity; namely,
τ ∈ Q ∪∞ =: P1

Q.

Theorem. We have that ∆ ∈ S12.

Corollary. Since both are weight 12 cusp forms with constant term 1, we have

E3
4 − E2

6

1728
= q(q)24∞.

Proof. Cuspidality is clear as q|∆. Consider the log derivative, which turns the product
into a sum, and is sensible since ∆ has no zeros on H:

∆′(τ)

∆(τ)
= D log

(
q
∏
n≥1

(1− qn)24

)
= 1− 24

∑
n≥1

nqn

1− qn
.

This is an example of a Lambert series. Note that

qn

1− qn
=
∑
k≥1

qnk.

More generally, we have∑
n≥1

anq
n

1− qn
=
∑
n≥1

an
∑
k≥1

qnk =
∑
m≥1

∑
n|m

anq
m

by rearranging summation. In particular,
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∆′

∆
= 1− 24

∑
n≥1

σ1(n)qn = E2(τ).

We can deduce the transformation law for ∆ using our transformation for E2:

D log

(
∆(γτ)

(cτ + d)12∆(τ)

)
=

1

(cτ + d)2
E2(γτ)− 12

2πi
· c

cτ + d
− E2 = 0.

That is,
∆|12γ = C(γ)∆

for all γ ∈ Γ and C(γ) a complex number. It suffices to show that each C(γ) = 1. Since
∆ 7→ ∆12γ is a group action, its enough to show C(T ) = C(S) = 1. Now C(T ) = 1 as
∆ is a function of q by definition so is periodic. Further,

∆(−1/τ) = C(s)τ 12∆(τ)

and plugging in at τ = i gives
∆(i) = C(S)∆(i).

Since ∆(i) 6= 0, we have C(S) = 1. �

2. The Ramanujan τ function

The coefficients of ∆ form the Ramanujan τ function:

∆(τ) =:
∑
n≥1

τ(n)qn.

The first few coefficients are:

∆(τ) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6.

Note in particular that

τ(2)τ(3) = (−24) · 252 = −6048 = τ(2 · 3) = τ(6).

This is not a coincidence! Ramanujan famously conjectured the following.

Conjecture (Ramanujan). The function τ(n) is multiplicative, that is, when (m,n) =
1, we have

τ(mn) = τ(m)τ(n).

We will prove this via the theory of Hecke operators.
There are also deep analytic properties.

Conjecture 1 (Ramanujan). We have that

τ(n) = O
(
n

11
2
+ε
)
.

Even better, for prime p, we have

|τ(p)| ≤ 2p
11
2 .
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Remark. We’ll see later that the behavior at primes determines all values of τ .

We will not be able to prove that in this class, as it requires Deligne’s proof of
the Weil conjectures (he won the Fields medal for this). Though we will discuss the
Weil Conjectures later when we return to elliptic curves. It should be noted that this
conjecture was extremely influential and is the first of a general type of conjecture in
analytic number theory.

3. Growth of modular form Fourier coefficients

We can, however, get close to Ramanujan’s conjectured growth, and prove the estimate

τ(n) = O
(
n

12
2

)
= O(n6).

More generally,

Theorem. If f ∈ Sk, then the Fourier coefficients af (n) satisfy

|af (n)| ≤ Cn
k
2

for some C.

Proof. First I’ll leave you with an imperative (but not that difficult) fact to check. We’ll
need something similar later to define inner products.

Important Exercise 1. The function F (τ) := v
k
2 |f(τ)| is Γ-invariant.

Now since f ∈ Sk, we have f = O(q). As

q
∣∣
τ=iv

= e−2πv,

f decays exponentially as v → ∞. On the fundamental domain, F is bounded. To see
this, note that for any C > 0 and for v large enough, say above height T , then |F | < C,
but the truncated fundamental domain FT at height T is compact so F is bounded there
too.
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By Γ-invariance, F is bounded on H. Let’s say

F (τ) = v
k
2 |f(τ)| ≤ C ′ =⇒ |f(τ)| ≤ C ′v−

k
2 .

Now we can recover the Fourier coefficients with the following fundamental formula

af (n) = e2πnv
∫ 1

0

f(u+ iv)e−2πinudu (for any v > 0).

Thus,

|af (n)| ≤ C ′v−
k
2 e2πnv.

We can even choose v optimally by setting v := k
4πn

(but getting this optimally isn’t

required; the key point is that we choose v ≈ n−1 so that the v power is the n
k
2 in

the theorem and the exponential is a constant), which then gives the statement of the
theorem with

C = C ′
(

4πe

k

) k
2

.

�

Corollary. If f ∈Mk then
|af (n)| � nk−1+ε.

Remark. The Vinagradov notation � · just means O(·) but its often handy (especially
to denote dependence on certain parameters and string it in chains).

Remark. The general version of Ramanujan’s conjectures then says that the growth of
cusp form coefficients is like the square root of the growth of non-cusp forms.

Proof. Since Mk = C ·Ek ⊕ Sk, and we know how to estimate the growth of coefficients
in Sk, we look at Ek. For n > 1, we have

[qn]Ek
.
= σk−1(n) ≈ nk−1.

Why is this true? Well, we clearly have the bounds (the first since 1, n are divisors of
n, the second because the set of divisors of n is a subset of {1, 2, . . . , n}; for the final
estimate compare this to an integral)

1 + nk−1 ≤ σk−1 ≤
n∑
j=1

jk−1 = O(jk).

But we can do better on the upper bound. Every divisor of n has a complementary
divisor n/d, and as d ranges over all divisors, so does n/d. Thus,

σk−1(n) =
∑
d|n

dk−1 =
∑
d|n

(n
d

)k−1
= nk−1

∑
d|n

d−(k−1) ≤ nk−1
∑
d≥1

d−(k−1) = ζ(k−1)nk−1 = O(nk−1).

This is much larger than the maximum growth of cusp form coefficients, so it gives
an asymptotic upper bound on the growth of any modular form. �
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Thus, for non-cusp forms, the growth is dominated by the growth coming from the
Eisenstein series, which doesn’t oscillate too much but goes back and forth between
multiples of nk−1. Here is a plot for the first coefficients of G4:

What about explicit, tight upper bounds for the coefficients of non-cusp forms, rather
than big-Oh estimates or estimates that include a lot of extra terms like we did by
bounding it with a ζ function ? Well to give you an idea of the difficulty, consider the
analogous problem for E2. There you’d want a good upper bound for σ1(n). But we
have the following.

Theorem (Lagarias). The Riemann Hypothesis is equivalent to the statement that

σ1(n) ≤ Hn + eHn log(Hn)

for all n ≥ 1 with equality only for n = 1, where Hn is the n-th harmonic number
Hn :=

∑n
j=1

1
j
.

How do the coefficients of cusp forms really grow? Let’s look at ∆. I’ve plotted an
approximation of what you get from Ramanujan’s conjecture, which shows huge amounts
of oscillation in the coefficients:
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How do these coefficients actually vary in the range [−n11/2+ε, n11/2+ε]? Well, let’s
consider the prime values which we’ll see determine everything. Then we know that
τ(p) ∈ [−2p11/2, 2p11/2]. So τ(p)/(2p11/2) ∈ [−1, 1]. Thus, τ(p)/(2p11/2) = cos(ϑp) for
some angle ϑp ∈ [0, 2π). Let’s plot these angles for the primes up to one million (the
n-th coordinate is the n-th prime):

The values are certainly between 0 and π, but they don’t seem equally distributed. I tried
to have my computer make histograms, but it was too slow to get compute enough for a
good picture. But, if you do draw this picture, you find that the angles are distributed
like 2

π
sin2(ϑ):
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Then we have the following conjecture, whose proof was a very major recent theorem.

Theorem (Sato-Tate Conjecture; Now a theorem of Barnett-Lamb, Geraghty, Harris,
and Taylor). If f(τ) is a certain type of cusp form such as ∆(τ), then the angles ϑp
defined at primes p by

af (p)

2p
k−1
2

= cos(ϑp)

satisfy the following distribution. If [a, b] ⊆ [0, π] is any interval, then

lim
x→∞

#
{
p ≤ x

∣∣ϑp ∈ I}
#{p ≤ x

∣∣ p is prime}
=

∫ b

a

2 sin2 ϑdϑ

π
.

4. A famous open problem

There is a very famous conjecture in particular about τ(n).

Conjecture 2 (Lehmer’s Conjecture). For all n ≥ 1, we have τ(n) 6= 0.

The first thing you can try to do is search for congruence obstructions.

Example 1. Let A :=
∑

n≥1 σ3(n)qn, B :=
∑

n≥1 σ5(n)qn, so that E4 = 1 + 240A,
E6 = 1− 504B. Then we have

∆ =
(1 + 240A)3 − (1− 504B)2

1728
=

5(A−B)

12
+B + 100A2 − 147B2 + 8000A3.

The only denominator is a 12. But 12|(A−B) since 12|(σ5(n)− σ3(n)) for all n as

12|(d5 − d3) = d3(d2 − 1)



8 LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

(if d is even, then 4|d3(d2−1) and if d is odd then d2 ≡ 1 (mod 4) so d2−1 ≡ 0 (mod 4),
and if d ≡ 0 (mod 3), d3 ≡ 0 (mod 3), and if d ≡ ±1 (mod 3), then d2 ≡ 1 (mod 3) so
d2−1 ≡ 0 (mod 3)). In fact, we actually even have that 24|(A−B). Thus, we have that
τ(n) ∈ Z, which is clear from the product formula, but not from our original formula.
The above together with the claimed 24 divisibility (which I leave as an exercise) also
implies that

∆ ≡ B +B2 (mod 2).

By the Freshmen’s Dream we have for any an ∈ Z:(∑
n

anq
n

)2

≡
∑
n

anq
2n.

Thus,

τ(n) ≡ σ5(n) + σ5(n/2) (mod 2) ≡

{
1 if n is odd,

0 if n is even.

Thus, τ(n) is odd half the time, and in particular non-zero at least half the time.
Even better, we can work in M12, a two dimensional space, to directly check using

only two coefficients that

G12 = ∆ +
691

156

(
E3

4

720
+

E2
6

1008

)
.

Thus, we have the surprising congruence

τ(n) ≡ σ11(n) (mod 691)

(Ramanujan also conjectured this, but it was first proven by Watson). The 691 is really
there because its the numerator of B12 and so in the constant term of G12. This is a very
special congruence, and Serre and Swinnerton-Dyer showed how this is really coming
from a Galois representation in a deep way. Using the theory of Galois representations,
there is the following brand new result

Theorem (Balakrishnan, Craig, Ono, May 2020). For n ≥ 1, we have

τ(n) 6∈ {±1,±3,±5,±7,±691}.

Using an explicit version of Sato-Tate, we also have the strong density result:

Theorem (Rouse-Thorner). Assume some standard conjectures, such as GRH but also
conjectures which were just proven in late 2019 by Newton and Thorne, then we have

lim
x→∞

#{n ≤ x
∣∣ τ(n) 6= 0}
x

> 1− 1.54 · 10−13
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