MODULAR FORMS LECTURE 14: DIFFERENTIAL OPERATORS AND QUASIMODULAR FORMS

LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

To improve upon Hecke [in a treatment along classical lines of the theory of algebraic numbers] would be a futile and impossible task.

André Weil

1. Differential operators

Previously, we saw that the Eisenstein series/Poincaré series construction for E_{k} fails at $k=2$, but only just barely. We also saw that there are no non-zero modular forms of weight 2 . However, E_{2} is very nearly a modular form. Since we saw its q-expansion before, its translation invariant, and its S transformation is given by:

$$
\left.E_{2}\right|_{2}(S-1)=\frac{12}{2 \pi i \tau}
$$

This "error" to modularity, instead of being 0 if it were a true modular form, is a simple rational function in τ. We will soon see where this formula comes from.
Corollary. The non-holomorphic function

$$
E_{2}^{*}(\tau):=E_{2}(\tau)-\frac{3}{\pi v}
$$

transforms like a modular form of weight 2 .
Exercise 1. Show that this follows from the transformation property of E_{2} above.
Remark. This function has several interpretations. We will see one below. Another is that its the first example of a mock modular form, which leads to the theory of harmonic Maass forms (real-analytic modular forms that are harmonic with respect to the hyperbolic metric instead of holomorphic).

In proving the Valence Formula, we also saw that the derivative of a modular form just barely fails to be a modular form. In fact, its failure is essentially the same as that of E_{2} above. The problem is that for functions $f: \mathbb{H} \rightarrow \mathbb{C}$, we don't have intertwining:

$$
\left.(D f)\right|_{k+2} \gamma \neq D\left(\left.f\right|_{k} \gamma\right)
$$

where $D:=\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q}$.
However, there are two corrections to this failure.
Definition. The Serre derivative is given by

$$
\vartheta_{k}(f):=D f-\frac{k}{12} E_{2} f .
$$

The raising operator is given by

$$
R_{k}(f):=-4 \pi D(f)+\frac{k f}{v} .
$$

Remark. If you read the literature on raising (and lowering) operators, there are different conventions.

These operators "fix" modularity, and map from weight k modular forms to weight $k+2$ modular forms. For example, we have the intertwining property

$$
\left.\left(R_{k} f\right)\right|_{k+2} \gamma \neq R_{k}(f \mid k \gamma)
$$

for any function $f: \mathbb{H} \rightarrow \mathbb{C}$ and any $\gamma \in \Gamma$.
Exercise 2. Show that the Serre derivative and raising operatorssend modular forms of weight k to modular forms of weight $k+2$ (this is only about the transformation behavior; the raising operator destroys holomorphicity).

You may have noticed that for $k=0$, we have $R_{0}=-4 \pi D$, as the extra piece cancels out. Thus, differentiating something in weight 0 does give a modular form of weight 2. In general, its useful to have the exact relationship between iterated derivatives and raising operators.

Exercise 3. Show that for all $k \in \mathbb{Z}$ and $n \geq 0$, we have

$$
R_{k}^{n}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}(k+r)_{n-r} v^{r-n}(4 \pi D)^{r},
$$

where $(a)_{n}:=a(a+1) \ldots(a+n-1)$ is a rising factorial. Do this by induction. [Note: This is a pretty hard exercise, as it uses some tricky identities. We wrote down the details of the proof in my book with Bringmann, Folsom, and Ono on harmonic Maass forms, and I can share the details of this computation with you if you're interested.]

Corollary (Bol's Identity). For $k \geq 1$, we have

$$
D^{k-1}=\frac{1}{(-4 \pi)^{k-1}} R_{2-k}^{k-1},
$$

where the iterated raising operator is

$$
R_{n}^{k}:=R_{k+2(n-1)} \circ \ldots \circ R_{k} .
$$

That is, you compose n raising operators and raise the weight by 2 each time.
Proof. Using the result from the exercise, let $k \mapsto 2-k$ and plug in $n=k-1$. Then the terms $(2-k+r)_{k-1-r}=(2-k+r)(3-k+r) \cdots(-2) \cdot 0$ all vanish except for $r=n=k-1$, when we have the empty product which we consider to be 1 . This term gives $(-1)^{k-1}\binom{k-1}{k-1} \cdot 1 \cdot v^{0}(4 \pi D)^{k-1}$, which is equivalent to the claim.

Corollary. The $k-1$-st derivative of a weight $2-k$ weakly holomorphic modular form is modular of weight k. For instance $D\left(M_{0}^{!}\right) \subseteq M_{2}^{!}$, and $D^{3}\left(M_{-2}^{!}\right) \subseteq M_{4}^{!}$.
Proof. The operator D^{k-1} preserves holomorphicity. By Bol's Identity, it is also an iterated raising operator, and so preserves modularity.

Remark. There is something very special about the relationship between weights k and $2-k$. There are general reasons for this, including Serre duality.

2. Quasi and almost holomorphic modular forms

The definitions above give rise to two related spaces of forms.
Definition. An almost holomorphic modular form is a function which is a modular form but where the condition that it is holomorphic is replaced by the condition that it is a polynomial in $1 / v$ with holomorphic coefficients. A quasimodular form is a holomorphic part of an almost holomorphic modular form.

We saw earlier that all modular forms are polynomials in E_{4} and E_{6}. We have the following extension, which we'll state without proof.

Proposition. The algebra of almost holomorphic modular forms \mathcal{M}^{*} is $\mathbb{C}\left[E_{2}^{*}, E_{4}, E_{6}\right]$. The algebra of quasimodular forms $\widetilde{\mathcal{M}}$ is $\mathbb{C}\left[E_{2}, E_{4}, E_{6}\right]$.

The algebra of quasimodular forms is closed under differentiation. In particular, differentiation has the following effect on the generators.
Exercise 4. Show the Ramanujan formulas:

$$
\begin{gathered}
D E_{2}=\frac{E_{2}^{2}-E_{4}}{12}, \\
D E_{4}=\frac{E_{2} E_{4}-E_{6}}{3} \\
D E_{6}=\frac{E_{2} E_{6}-E_{4}^{2}}{2}
\end{gathered}
$$

3. Quasimodularity of E_{2}

Let's finally prove the transformation formula for E_{2}. Since its just a multiple of G_{2}, this is equivalent to determining this for G_{2}.
Theorem. For any $\gamma \in \Gamma$, we have

$$
G_{2}(\gamma \cdot \tau)=(c \tau+d)^{2} G_{2}(\tau)-\pi i c(c \tau+d)
$$

Proof. We use a common technique called the Hecke trick. We'll closely follow the exposition in Zagier's chapter of the "1-2-3 of modular forms". Recall that we can write

$$
G_{2}(\tau)=\frac{1}{2} \sum_{m, n}^{\prime} \frac{1}{(m \tau+n)^{2}}
$$

This doesn't converge absolutely, but nearly does. Fix this by deforming $\varepsilon>0$:

$$
G_{2, \varepsilon}:=\frac{1}{2} \sum_{m, n}{ }^{\prime} \frac{1}{(m \tau+n)^{2}|m \tau+n|^{2 \varepsilon}} .
$$

By the same proof as we did for the modularity of Eisenstein series before, this converges absolutely and we have

$$
G_{2, \varepsilon}(\gamma \tau)=(c \tau+d)^{2}|c \tau+d|^{2 \varepsilon} G_{2, \varepsilon}(\tau)
$$

We aim to show that

$$
\lim _{\varepsilon \rightarrow 0^{+}} G_{2, \varepsilon}(\tau)=G_{2}(\tau)-\frac{\pi}{2 v}
$$

If we know this, then we have that $G_{2}^{*}(\tau)=G_{2}(\tau)-\frac{\pi}{2 v}$ is an almost holomorphic modular form of weight 2 . Similarly to the exercise above, this easily implies the claimed transformation formula for $G_{2}(\tau)$.

To see this limit formula, let

$$
I_{\varepsilon}(\tau):=\int_{-\infty}^{\infty} \frac{d t}{(\tau+t)^{2}|\tau+t|^{2 \varepsilon}}, \quad\left(\tau \in \mathbb{H}, \varepsilon>-\frac{1}{2}\right)
$$

Then for $\varepsilon>0$, we have
$G_{2, \varepsilon}(\tau)-\sum_{m \geq 1} I_{\varepsilon}(m \tau)=\sum_{n \geq 1} \frac{1}{n^{2+2 \varepsilon}}+\sum_{m \geq 1} \sum_{n \in \mathbb{Z}}\left[\frac{1}{(m \tau+n)^{2}|m \tau+n|^{2 \varepsilon}}-\int_{n}^{n+1} \frac{d t}{(m \tau+t)^{2}|m \tau+t|^{2 \varepsilon}}\right]$.
Both sides converge absolutely and locally uniformly (in the second one, the term in big brackets is $\left.O\left(|m \tau+n|^{-3-2 \varepsilon}\right)\right)$. Thus the limit exists as $\varepsilon \searrow 0$. We can find this limit by plugging in $\varepsilon=0$ term by term. Now $I_{0}(\tau)=0$, and plugging in $\varepsilon=0$ in the rest kills the absolute values and gives us an expression for G_{2} (just with the $m=0$ terms split off, just as we did when we computed the Fourier expansions of G_{k}).

We also compute, for any $\varepsilon>-\frac{1}{2}$, that $I_{\varepsilon}(\tau)$ doesn't depend on u :

$$
I_{\varepsilon}(u+i v)=\int_{-\infty}^{\infty} \frac{d t}{(u+i v+t)^{2}\left((u+t)^{2}+v^{2}\right)^{\varepsilon}}=\int_{-\infty}^{\infty} \frac{d t}{(t+i v)^{2}\left(t^{2}+v^{2}\right)^{\varepsilon}}=\frac{I(\varepsilon)}{v^{1+2 \varepsilon}}
$$

where

$$
I(\varepsilon):=\int_{-\infty}^{\infty} \frac{d t}{(t+i)^{2}\left(t^{2}+1\right)^{\varepsilon}}
$$

Thus,

$$
\sum_{m \geq 1} I_{\varepsilon}(m \tau)=\frac{I(\varepsilon) \zeta(1+2 \varepsilon)}{v^{1+2 \varepsilon}}
$$

Clearly $I(0)=0$, and

$$
I^{\prime}(0)=-\int_{-\infty}^{\infty} \frac{\log \left(t^{2}+1\right) d t}{(t+i)^{2}}=\left[\frac{1+\log \left(t^{2}+1\right)}{t+i}-\arctan (t)\right]_{-\infty}^{\infty}=-\pi
$$

Further,

$$
\zeta(1+2 \varepsilon)=\frac{1}{2 \varepsilon}+O(1)
$$

$(\zeta(s)$ has a simple pole of residue 1 at $s=1)$, and so

$$
\lim _{\varepsilon \rightarrow 0} \frac{I(\varepsilon) \zeta(1+2 \varepsilon)}{v^{1+2 \varepsilon}}=-\frac{\pi}{2 v}
$$

Exercise 5. Fill in any details in the sketch above.

