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Everyone knows what a curve is,
until he has studied enough
mathematics to become confused
through the countless number of
possible exceptions.

Felix Klein

We have characterized all holomorphic modular forms using the valence formula.
What about other spaces of meromorphic modular forms? If we allow poles, we will
get infinite dimensional spaces. This is still often manageable, though; for example, if
we look at weakly holomorphic forms and bound the order of the pole at ∞, then we
still obtain finite dimensional spaces. For example, we can multiply by powers of ∆ to
get to holomorphic modular form spaces and can go backwards because ∆ has no poles
on the upper half plane. Thus, M !

k is nearly as easy to specify as Mk.
There is a key case we want to look at now. We call any element of Mmero

0 a modular
function. Let’s try to construct an example of a modular function. If we take a quotient
of two modular forms with the same weight, the result will be something of weight 0. If
we use M12, then we have a 2-dimensional space, and ∆ has no zeros on H. So we have

j(τ) :=
E3

4

∆
= q−1 + 744 + 196884q + . . . ∈M !

0.

This is called Klein’s j-invariant.

Theorem. The j-invariant is a bijection from F to C. Further, it is a bijection between
the compactified upper half plane H = H ∪ ∞ modulo Γ to the Riemann sphere P1

C =
C ∪∞.

Proof. The function j(τ) has a simple pole at ∞ and no other poles. So it takes ∞ to
∞. Now we want to show that it is a bijection Γ\H→ C. For any c ∈ C, the modular
form E3

4 − c∆ ∈ M12 has by the Valence Formula exactly one zero (it can’t be at ∞ as
the Fourier expansion is 1 + O(q), and its a triple zero at ω if and only if c = 0) in H.
Dividing by ∆, j(τ)− c = 0 has a unique solution for each c ∈ C. �

Modular functions are also easy to determine using j. This is a very special property
of SL2(Z); that its a genus zero group (Γ\H is a Riemann sphere) is why a function
satisfying the next theorem exists. This makes j(τ) what we call a Hauptmodul.

Theorem. We have Mmero
0 = C(j), i.e., modular functions are rational functions in j.
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Proof. Its clear that C(j) ⊆Mmero
0 . Conversely, if f(τ) is a modular function with poles

at {τj} in F , then

f(τ) ·
∏
j

(j(τ)− j(τj)) ∈M !
0

as this cancels out all poles on H and introduces no new ones there. So, WLOG, say
f ∈ M !

0. Thenf(τ)∆(τ)j ∈ M12n for sufficiently large n to cancel the pole at ∞. Since
holomorphic modular forms are linear combinations of powers of E4 and E6, we have
that f(τ) is a linear combination of functions of the form Ei

4E
j
6/∆

n. Now 12|4i+ 6j so
we have that 3|i and 2|j. Write i = 3i0, j = 2j0. The original definition of j(τ), and our
previous definition of ∆(τ) show that E3

4/∆ and E2
6/∆ are rational functions in j (the

first is j and for the second E2
6/∆=̈(E3

4 + ∆)/∆ = j(τ) + 1, where =̈ means there are
non-zero constants in front of each factor). Thus, Ei

4E
j
6/∆

n = E3i0
4 Ej0

6 /∆
n ∈ C(j). �

Note that it is famously difficult to find this rational function in practice, but it exists!
Finally, we will fill in one detail that was promised in our earlier study of elliptic

curves. For this, we first consider the meaning of j(τ) for elliptic curves.

Definition. The j-invariant of an elliptic curve y2 = x3 + Ax+B is

−1728
(4A)3

∆
.

The point is that it determines isomorphism classes of elliptic curves over C.

Definition. We say that E : y2 = x3 +Ax+B is isomorphic to E ′ : y2 = x3 +A′x+B′

over a field K if there is a µ ∈ K× such that

A = µ4A′, B = µ6B′.

Remark. The point of this definition is that this is the only change of variables pre-
serving the Weierstraß form of the elliptic curve equation. As an exercise, prove this.

Theorem. Two rational elliptic curves E,E ′ over a field of characteristic not equal to
2 or 3 are isomorphic over C if and only if j(E) = j(E ′).

Proof. If E ∼=C E
′, then we have A = µ4A′, B = µ6B′, so

j(E ′) = −1728
(4A)′3

∆′
= −1728

µ12(4A)3

−16(4A′3 + 27B′2)
= −1728

(4A)3

−16(4A3 + 27B2)
= j(E).

Conversely, suppose j(E) = j(E ′). Then

(4A)3

4A3 + 27B2
=

(4A′)3

4(A′)3 + 27(B′)2
=⇒ 4A3 + 27B2

(4A)3
=

4(A′)3 + 27(B′)2

(4A′)3

=⇒ A3(B′)2 = (A′)3B2.

There are several cases.
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Case i). A = 0: This is the case when j = 0. The discriminant can’t be zero so
B 6= 0, and we have (A′)3B2 = 0, so we also have A′ = 0. Then we satisfy the definition

of isomorphism above with µ = (B/B′)
1
6 .

Case ii). B = 0: This is the case when j = 1728. Again, we have A 6= 0, but

A3(B′)2 = 0, so B′ = 0. Then we get our necessary change of variables µ = (A/A′)
1
4 .

Case ii). A,B 6= 0: This is the case where j 6∈ {0, 1728}. We have that A′B′ 6= 0, as
if one of them was zero, then the relation above implies that both of them are, so we’d
have that ∆′ = 0 and E ′ wouldn’t be an elliptic curve. Our rescaling is then given by
µ = (A/A′)

1
4 = (B/B′)

1
6 . �

Remark. In particular, the above proof really shows that all we have to do is go to an
algebraic closure of the field of definition of the curve, not necessarily all the way to C.

Example 1. Earlier we saw that the quadratic twists En : y2 = x3−n2x are all isomor-
phic over C, but not over Q. We can see that they are isomorphic over C by checking
the j-invariants. Indeed,

j(En) = −1728
(−4n2)3

−16 · (−4n6)
= 1728

is independent of n.

We now come to the promised result.

Theorem. All rational elliptic curves are isomorphic to C/Λ for some lattice Λ.

Proof. We saw earlier using ℘, ℘′ that there is an isomorphism from C/Λ to the elliptic
curve EΛ : y2 = 4x3− g2(Λ)x− g3(Λ). Let j(Λ) be the j-invariant of this curve. Letting
Λ = 〈1, τ〉, we see by tracing previous definitions that j(τ) = j(Λ). Then we need to
show that there is a Λ with j(Λ) = j(E). In other words, we want to find a τ with
j(τ) = j(E). But j(E) is some fixed number, and we saw above that j(τ) takes every
value in C. �


