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Without doubt it would be desirable
to have a rigorous proof of this
proposition; however I have left this
research aside for the time being
after some quick unsuccessful
attempts, because it appears to be
unnecessary for the immediate goal
of my study.

Riemann on his Hypothesis

1. Dimension Formulas

Just like we did with elliptic functions, modular forms will be determined by their
divisors, the set of their poles and zeros. We can use this to study the spaces Mk and
Sk, and in particular to give explicit formulas for their dimensions. To start, we can
count the number of points in the divisor as a simple function of the weight.

Theorem (Valence Formula). Let 0 6= f ∈Mmero
k . Then we have

ν∞(f) +
1

2
νi(f) +

1

3
νω(f) +

∑
τ0∈F\{i,ω}

ντ0(f) =
k

12
.

Here ν∞(f) is the order of vanishing at ∞ of f (if f(τ) =
∑

n≥n0
anq

n with an0 6= 0,
this is ν∞(f) = n0), and ντ0(f) is the order of vanishing at a point τ0 ∈ H (the Laurent
expansion of f at τ0 is of the form

∑
n≥ντ0 (f)

bn(τ − τ0)n with bν(τ0) 6= 0. Note that the

order is negative if there is a pole at a point.

Proof. We want to count zeros and poles. As we did for elliptic functions, the go-to
way to do this is via the Argument Principle; integrating the log derivative. We have
to count zeros and poles inside of the fundamental domain, so we integrate along its
boundary. Recall that the log derivative transforms zeros and poles of f into simple
poles with residue equal to the order of vanishing.

We have to be careful with our path of integration, however. We need to avoid any
points in the divisor of F which lie on the boundary. We also need a closed path, so we
chop off the fundamental domain at some height T which is higher than any zeros or
poles of f except a possible one at i∞. This is possible, because of the condition that
the function is meromorphic at i∞. Specifically, as a function of q, this means that f
is a meromorphic function on the punctured unit disk with the origin removed (this is
one reason why some condition at i∞ helps to obtain a good space of functions).

In the following picture, we draw a typical integration path that avoids a zero/pole
on the side P (and the necessary additional zero/pole TP = P + 1), and a point on the
bottom arc Q together with the point SQ = −1/Q. The small circular arcs are chosen
so that one divisor point on the boundary lies inside of the curve and one lies on the
outside, except that if there is a zero/pole at i or ω, then as in the picture they are left
outside of the curve in all little circular arcs.
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In short, the above picture shows the path when the zeros/poles on the boundary are
P,Q, i, ω, and all zeros/poles on the interior have imaginary part less than T . The little
arcs are circles of radius ε > 0, which will be taken to tend to zero.

The Residue Theorem/Argument Principle imply

1

2πi

∫
C

f ′(τ)dτ

f(τ)
=

∑
τ0∈F\{i,ω}

ντ0(f).

We will evaluate this integral piece by piece. Firstly, note that f(τ) being translation
invariant implies that the logarithmic derivative is too, by differentiating the relation
f(τ + 1) = f(τ) and using the (basically trivial here) chain rule. Thus the left and right
pieces of the integral cancel out:∫

AB

f ′(τ)dτ

f(τ)
+

∫
GH

f ′(τ)dτ

f(τ)
=

∫
AB

f ′(τ)dτ

f(τ)
−
∫
HG

f ′(τ)dτ

f(τ)
= 0.

Next we look at the piece at the top, along HA. This is determined by the behavior at
i∞. Specifically, the line HA in the τ variable becomes the circle CT of radius e−2πT

centered at the origin in the q variable, traversed clockwise. Renaming this change
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of variables f̃(q) = f(τ) =
∑

n anq
n, and using

f ′(τ) =
d

dq
f̃(q)

dq

dτ

we thus have

1

2πi

∫
HA

f ′(τ)dτ

f(τ)
=

1

2πi

∫
CT

f̃ ′(q)dq

f̃(q)
.

By the Residue Theorem, this is −ν∞(f) (the minus is because the path is clockwise).
We now evaluate the integrals by the points i and ω, namely the paths BC, DE, and

FG. We will need a modification of the Residue Theorem. To explain this, we’ll quickly
recall how the Argument Principle works. If you have a function f(τ) with Laurent
expansion f(τ) = cm(z − a)m + . . . with cm 6= 0, then the Argument Principle gives us

f ′(τ)

f(τ)
=

m

z − a
+ g(z),

where g is holomorphic at a. If you integrate this log derivative around a small circle of
radius ε, going counter-clockwise, the integral will give you 2πim. If you instead only
integrate over an arc of angle θ and let ε ↘ 0, then instead you get θim. To see this,
consider the basic example of the Residue Theorem (I previously mentioned this as an
example to try explicitly if you want to see how it works). The integral of g on the
tiny arc goes to zero, as the arc lengths do and it doesn’t blow up near a. Thus, we
want, after translating to get an integral of 1/z around the origin and parameterizing
the circular arc as εeit with t ∈ [a, a+ θ]

lim
ε→0

∫ a+θ

a

miεeitdt

εeit
= mi lim

ε→0

∫ a+θ

a

dt = miθ,

as claimed
In our situation, the integral alongBC, with ε tending to 0, the limiting angle (between

the line and circle pieces of the boundary) π/3 and the path is clockwise, and so∫
BC

f ′(τ)dτ

f(τ)
= − 1

2πi
(νω(f) · πi/3) = −νω(f)

6
.

The integral along FG, in the same way, becomes −νω+1(f)/6 = −νω(f)
6

. Similarly, the

integral along DE becomes −νi(f)
2

, since the arc has angle tending to π.
We are now very close. We just have to show that as ε↘ 0, we have

1

2πi

∫
CD

f ′(τ)dτ

f(τ)
+

1

2πi

∫
EF

f ′(τ)dτ

f(τ)
=

k

12
.

The point is that CD = −S ·(EF ), that is, they map to each other under S with opposite
orientation, but unlike with translation invariance, the modular inversion relation is
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not preserved under differentiation. However, it nearly is. Let’s look at what
differentiation does to modularity. If

f(γτ) = (cτ + d)kf(τ),

then we get

f ′(γτ)
dγτ

dτ
= (cτ + d)kf ′(τ) + kc(cτ + d)k−1f(τ).

Dividing gives
f ′(γτ)

f(γτ)
dγτ =

f ′(τ)

f(τ)
dτ + k

cdτ

cτ + d
.

Thus, taking c = 1, d = 0, we get

1

2πi

∫
CD

f ′(τ)dτ

f(τ)
+

1

2πi

∫
EF

f ′(τ)dτ

f(τ)
=

1

2πi

∫
CD

f ′(τ)dτ

f(τ)
− 1

2πi

∫
S·(CD)

f ′(τ)dτ

f(τ)

=
1

2πi

∫
CD

f ′(τ)dτ

f(τ)
− f ′(Sτ)dSτ

f(Sτ)
= − k

2πi

∫
CD

dτ

τ
.

As ε↘ 0, this becomes (taking z = eiθ)

− k

2πi
lim
ε→0

∫
CD

dτ

τ
= − k

2πi
lim
ε→0

∫ π
2

2π
3

ieiθdθ

eiθ
= − k

2πi
·
(
−πi

6

)
=

k

12
,

completing the proof.
�

Remark. This is also a special case of a very general result called the Riemann-Roch
theorem. When we look at more general situations, we may cite that, but it is worth
doing this “hands-on” analysis proof once.

Remark. The proof suggests that derivatives of modular forms aren’t quite modular
forms, but nearly are. They are actually quasimodular forms, as we’ll see.

This allows us to prove very strong results on modular forms spaces. Before stating
this, note that it is easy to check that MkM` ⊆ Mk+`; that is, a product of modular
forms is a modular form where the weights add (this simply comes from the identity
(cτ + d)k(cτ + d)` = (cτ + d)k+`).

Theorem. Let k be an even integer. Then the following hold.

(1) M0 = C. That is, holomorphic modular forms of weight 0 are constant.
(2) Mk = 0 if k < 0 or k = 2.
(3) If k ∈ {4, 6, 8, 10, 14}, then Mk is one-dimensional, generated by Ek.
(4) Sk = 0 if k < 12 or k = 14. Letting ∆ := (E3

4−E2
6)/1728 = q−24q2+252q3+ . . .

be the modular discriminant (the name comes from the discriminant of the
elliptic curve C/(Zτ + Z)), we have S12 = 〈∆〉. For k > 14, Sk = ∆Mk−12.
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(5) Mk = Sk ⊕ CEk for k > 2. That is, the space of modular forms splits up as
cusp forms and Eisenstein series. This will be a powerful fact that’s true in great
generality. We will see that this is actually an orthogonal decomposition with
respect to a special inner product.

(6) The algebra of modular formsM := ∪k∈ZMk is C[E4, E6]. That is, any modular
form is a polynomial in these two functions.

(7) There is a basis of Mk consisting of forms with rational Fourier expansions.
(8) The dimensions of Mk and Sk are given by:

dimCMk =

{⌊
k
12

⌋
k ≡ 2 (mod 12),⌊

k
12

⌋
+ 1 k 6≡ 2 (mod 12),

dimC Sk = dimCMk − 1.

Proof. We use the valence formula. Since we are looking at holomorphic forms here, all
orders of vanishing are non-negative. We look case by case.

Proof of (1): If f ∈ M0, let c be some value f(τ0). Then f(τ) − c ∈ M0 has a
zero and the valence formula tells us that a bunch of non-negative numbers plus the
positive number from the zero at τ0 add up to zero. This is a contradiction, so in fact
f(τ)− c ≡ 0.

Proof of (2): If k < 0 or k = 2, then we either have a bunch of non-negative numbers
adding up to a number that’s negative, or we have a sum of integers and positive integers
divided by 2, 3 adding up to 1/6. This is impossible, as the smallest non-zero sum we
could get is 1/3.

Proof of (3): Let’s split into sub-cases.
Case i). k = 4 Then the weighted sums of orders of vanishing is 1/3. The only

possibility is that νω(f) = 1 and there are no other zeros.
Case ii). k = 6 Here the weighted sum is 1

2
, so we have νi(f) = 1 and there are no

other zeros.
Case iii). k = 8 In this case, we have k/12 = 2/3, so we must have νω(f) = 2 and

there are no other zeros.
Case iv). k = 10 Now k/12 = 5/6 so there is a simple zero at i and ω and no other

zeros.
Case v). k = 14 Here we must have νω(f) = 2, νi(f) = 1, and no other zeros.
In any of these cases, if f1, f2 ∈ Mk, then they have precisely the same set of zeros.

Thus, f1/f2 is a holomorphic modular form of weight 0, and by the above constant.
Thus, they live in a one-dimensional space, spanned by any non-zero element such as
Ek.

Proof of (4): The condition that f is a cusp form means that ν∞(f) ≥ 1. This can’t
happen for k < 12. If k = 12, then there is only one zero allowed, and so f has to have a
zero at∞ and no other zeros. As in the last case, this determines it up to multiples once
you find a single example. ∆ is such an example as the constant terms of any power of
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Ek is 1 so the constant term of E3
4 −E2

6 is 0. Finally, if k > 14 and f ∈ Sk, then we just
saw that ∆ has no zeros in H, so f/∆ ∈ Mk−12. We’ll see a more illuminating proof of
the fact that ∆ has no zeros on the upper half-plane later.

Proof of (5): Since Ek = 1 +O(q), given any modular form f ∈Mk, there is a linear
combination of f and Ek which kills the constant term of f . This is a cusp form.

Proof of (6): This follows by induction on k. For the one-dimensional spaces
M4,M6,M8,M10,M14, we can take as generators E4, E6, E

2
4 , E4E6, E

2
4E6. Let k = 12 or

k > 14. Then there is a choice of i, j such that 4i + 6j = k, which gives Ei
4E

j
6 ∈ Mk.

Since Ei
4E

j
6 = 1 +O(q), given any f ∈Mk, there is a linear combination of f and Ei

4E
j
6

which kills the constant term, giving a cusp form. But we saw that cusp forms of these
weights are ∆ times a form of smaller weight. Since ∆ ∈ C[E4, E6], by the induction
hypothesis we’re done.

Proof of (7): The basis is {Ei
4E

j
6

∣∣ i, j ≥ 0, 4i + 6j = k}. This is proven by a very
similar induction.

Proof of (8): This follows from the proof of the last fact, or another induction. One
can prove completely combinatorially the key related fact:

#
{
i, j ≥ 0

∣∣ 4i+ 6j = k
}

=

{⌊
k
12

⌋
k ≡ 2 (mod 12),⌊

k
12

⌋
+ 1 k 6≡ 2 (mod 12).

�

In particular, we obtain a new proof of the convolution sum identities that came from
the special differential equation of ℘(z). The recursion we gave for Eisenstein series
there will still be useful, but any particular case is a finite check.

Corollary 1.1. For all n ≥ 1, we have σ7(n) = σ3(n) + 120
∑

0<k<n σ3(k)σ3(n− k).

Proof. Since M8 is one-dimensional, and E2
4 , E8 ∈ M8, we have that E2

4 = E8 for some
constant c. But both have constant term 1, so c = 1 and E2

4 = E8. Now compare Fourier
expansions. �

Exercise 1. Let dimC(Mk) =: d. Show that there is a basis (its called the Victor Miller
basis) of Mk of elements f0, . . . , fd−1 ∈ Mk ∩ Z[[q]] (with integer Fourier coefficients)
such that for all 0 ≤ i, j ≤ d− 1, the i-th coefficient of fj, denoted [qi]f j, is

[qi]f j = δij,

the Kronecker delta function. That is, there is a basis of forms with integer coefficients
such that the table of coefficients up to qd−1 is a diagonal of 1’s. (Hint: Use row reduc-
tion.)

Exercise 2. Deduce that two modular forms are the same if and only their Fourier
coefficients up to qd−1 are: a finite check.


	1. Dimension Formulas

