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For fifteen days I strove to prove that
there could not be any functions like
those I have since called Fuchsian
functions. I was then very ignorant;
every day I seated myself at my work
table, stayed an hour or two, tried a
great number of combinations and
reached no results. One evening,
contrary to my custom, I drank black
coffee and could not sleep. Ideas rose
in crowds; I felt them collide until
pairs interlocked, so to speak,
making a stable combination. By the
next morning I had established the
existence of a class of Fuchsian
functions, those which come from the
hypergeometric series; I had only to
write out the results, which took but
a few hours.

Poincaré on his discoveries on what
we’d now call modular forms.

1. Constructing modular forms

We have seen properties of modular forms. As Poincaré asks above, do any interesting
ones exist? The answer is yes, of course! Let’s give our first examples. Last time, we
saw that modular symmetry is the same thing as being invariant under the Petersson
slash action. So the group Γ acts on the set of functions on the upper half plane, and
we want to find invariant functions which are analytically nice and don’t grow too fast.

We saw another instance of this type of question in the elliptic function notes. Namely,
what we can try to do is take a group average. This is called the method of Poincaré
series, and we will return to it throughout the class. It is one of the two primary
methods of producing modular forms from scratch. Given a seed function ϕ(τ), the
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ansatz is to consider a sum of the form

Pk(ϕ; τ) :=
∑
γ∈Γ

ϕ|kγ(τ).

Then, exactly as we saw with elliptic functions, Pk(ϕ; τ) will be modular if we can
guarantee that ϕ is nice enough and has good enough growth properties, and that this
sum is absolutely convergent. The first special case we’ll consider is what happens when
ϕ(τ) is a constant function. If, say, ϕ(τ) = 1, then we’d want to try

Pk(1; τ) :=
∑
γ∈Γ

1|kγ(τ) =
∑
γ∈Γ

1

(cτ + d)k
.

If k is odd, there are no non-zero modular forms, so let’s assume k is even. At face value
this will not work. For instance, if cτ + d = ±1, namely γ ∈ Γ∞ =

{
± ( 1 n

0 1 )
∣∣ n ∈ Z

}
,

the stabilizer of infinity, then we’ll get another copy of 1 in the sum. Thus, this sum
has infinitely many copies of “1” in it, so it diverges. However, we can easily fix this.

Definition. The Eisenstein series of weight k is

Ek(τ) :=
∑

γ∈Γ∞\Γ

1k|γ(τ) =
∑

γ∈Γ∞\Γ

1

(cτ + d)k
=

1

2

∑
c,d∈Z

(c,d)=1

1

(cτ + d)k
.

Exercise 1. Check the last equality (hint: check that two matrices have the same bottom
row iff you can transform one into the other by multiplying by an element of Γ∞, and
check that the set of possible bottom rows is the set of pairs of coprime integers; where
does the factor 1

2
come from?).

Theorem. We have that Ek(τ) ∈ Mk for any k ≥ 4 even. In particular, such Mk are
not zero-dimensional.

Proof. For modularity, we just have to check the absolute convergence properties. This is
either a very similar calculation as the previous exercise we sketched in class, or directly
follows from it since we saw this same function as a Taylor coefficient of the Weierstraß
℘-function. Note that we called the Eisenstein series there Gk, while here we called them
Ek. That is because we have taken a different normalization here. So to directly apply
our previous result, you must check that if

Gk(τ) :=
1

2

∑
m,n∈Z

′ 1

(mτ + n)k

then
Gk(τ) = ζ(k)Ek(τ),

where ζ(k) :=
∑

n≥1 n
−k is the Riemann zeta function (hint: this is because any

pair (m,n) ∈ Z2 is uniquely of the form r(c, d) with (c, d) = 1 and r > 0). To check
the absolute convergence directly, you basically just need to note that the inputs (c, d)
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with N ≤ |cτ + d| < N + 1 all correspond to lattice points cτ + d ∈ Zτ + Z in the
annulus of radii N and N + 1. The area of this annulus is π(N + 1)2 − πN2, and the
number of lattice points must be O(N) (the constant multiple of N depends on the area
of the fundamental parallelogram). So the sum behaves at worst like

∑
N≥1

N
Nk , which

for k > 2, is absolutely convergent.
It is also automatically holomorphic on H once we have these convergence properties.

We need to check that its holomorphic at i∞. This holds since it is bounded as taking
τ = iv and letting v →∞:

lim
v→∞

1

2

∑
c,d∈Z

(c,d)=1

1

(civ + d)k
=

1

2

∑
c=0,d∈Z
(c,d)=1

1

dk
=

1

2

∑
c=0,d=±1

1

dk
= 1.

Thus, Ek(τ) = 1 +O(q), and we are done. �

Anytime we get a modular form, our first question is what its Fourier expansion is.

Theorem 1.1. For even k ≥ 4, the Fourier expansion of Ek is given by

Ek(τ) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn ∈ Q[[q]].

Here, Bk is a Bernoulli number, defined by the (exponential) generating function

x

ex − 1
=
∑
k≥0

Bk
xk

k!
.

Proof. A famous theorem from complex analysis is the infinite product formula for the
sine function:

sin(πτ) = πτ
∏
n≥1

(
1− τ 2

n2

)
= πτ

∏
n≥1

(
1− τ

n

)(
1 +

τ

n

)
(it can be shown using the Weierstraß factorization formula, and it has to do with the
fact that sin(πτ) has a simple zero at all n ∈ Z, so like with polynomials you can try to
build up functions by their roots). Taking the log derivative of this formula turns the
product into a sum and gives

π cot(πτ) =
1

τ
+
∑
n≥1

( − 1
n

1− τ
n

+
1
n

1 + τ
n

)
=

1

τ
+
∑
n≥1

(
1

τ − n
+

1

τ + n

)
.

For short hand we will write this as

π cot(πτ) =
∑
n∈Z

1

(τ + n)
.

This sum is not absolutely convergent, but it is interpreted as a Cauchy principal
value; we have to let the negative and positive terms in the sum tend to infinity at
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roughly the same rate. That is, we take a sum from n = −M to n = N with |N −M |
bounded and take a limit as M,N →∞.

We can use complex exponentials and geometric series to write the LHS as

πi
eπiτ + e−πiτ

eπiτ − e−πiτ
= −πi1 + q

1− q
= −2πi

(
1

2
+
∑
j≥1

qj

)
.

Meanwhile, the LHS of the above looks like something that would be in the Eisenstein
series sum, but without powers in the denominator. Of course, we can access higher
powers by repeatedly differentiating. Specifically, we find (note: keep in mind the useful
formula: 1

2πi
d
dτ

= q d
dq

)

∑
n∈Z

1

(τ + n)k
=

(−1)k−1

(k − 1)!

dk−1

dτ k−1

(
−2πi

(
1

2
+
∑
j≥1

qj

))
=

(−2πi)k

(k − 1)!

∑
j≥1

jk−1qj.

Now we are ready to compute the Fourier expansion of Ek. Since Ek is the same as
Gk up to a constant, we can work with Gk from above. We simply split off the terms
with m = 0 off from the rest and compute:

Gk(τ) =
1

2

∑
0 6=n∈Z

1

nk
+

1

2

∑
m,n∈Z
m 6=0

1

(mτ + n)k
=
∑
n≥1

1

nk
+
∑
m≥1

∑
n∈Z

1

(mτ + n)k

= ζ(k) +
(2πi)k

(k − 1)!

∑
m≥1

∑
r≥1

rk−1qmr =
(2πi)k

(k − 1)!

(
−Bk

2k
+
∑
n≥1

σk−1(n)qn

)
.

Here we used Euler’s formula

ζ(k) = −(2πi)kBk

2k!
.

Since this formula is so famous, its worth giving it a short proof. From the above write

πiτ
eπiτ + e−πiτ

eπiτ − e−πiτ
= πiτ +

2πiτ

e2πiτ − 1
=
x

2
+

x

ex − 1
,

where we have set x := 2πiτ . Our cotangent identity then implies that

x

2
+

x

ex − 1
=
∑
n∈Z

x

x+ 2πin
= 1 +

∑
06=n∈Z

∑
k≥1

(−1)k+1 xk

(2πin)k

= 1 +
∑
k≥1

(−1)k+1
( x

2πi

)k ∑
06=n∈Z

1

nk
= 1− 2

∑
k≥0
k even

ζ(k)
( x

2πi

)k
.

Now the coefficient of xk for k ≥ 2 even in the first expression is by definition Bk

k!
, while

the same coefficient of xk on the last expression is −ζ(k)(2πi)−k.
By dividing by ζ(k), we obtain the desired Fourier expansions for Ek. �
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Example 1. The first few Eisenstein series from above are:

E4(τ) = 1 + 240
∑
n≥1

σ3(n)qn,

E6(τ) = 1− 504
∑
n≥1

σ5(n)qn,

E8(τ) = 1 + 480
∑
n≥1

σ7(n)qn.

Previously from elliptic functions we showed that E2
4 = E8 (after translating from G’s

to E’s). We will see another reason for this shortly. Plugging these expansions into the
previous discussion recovers our claimed combinatorial convolution identities.

Question. What happens when k = 2?

A careful study of the proof above shows that for k = 2, we are just on the edge of
absolute convergence. That is, the sums above absolutely converge for all k > 2. Since
we are so close, can modularity be saved? The answer is yes! This is analogous to use
saving the elliptic function we tried to build with a pole of order 2 at z = 0; a slight
modification fixes the convergence issue. This is a powerful technique we’ll study soon.
The short answer is that the natural guess

E2(τ) = 1− 24
∑
n≥1

σ1(n)qn

is nearly a modular form, and our first example of a quasimodular form.
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