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the circle with hyperbolic polygons of Nashville by me.

0.1. Slash action and automorphy factors. We have seen the definitions of different
types of modular forms, as well as some of their basic properties. We now continue with
another point of view on modularity which will be frequently useful.

Definition. The Petersson slash action of Γ on the set of functions f : H → C is
given (in weight k) by

f |kγ(τ) = f |γ(τ) := f(γ · τ)(cτ + d)−k.

Thus,

f is modular of weight k ⇐⇒ f |k(γ) = f for all γ ∈ Γ.

Exercise 1. Check that this is indeed a group action.

There is another special property of (cτ + d)k. It is what we call an automorphy
factor. This means the following. It is standard to denote an automorphy factor of this
by j, so let’s set

j(γ, τ) := (cτ + d)k.

If f is modular, we have

f(γτ) = j(γ, τ)f(τ)
1
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for all γ ∈]Γ, and so in particular

f(αβτ)

f(τ)
=
f(αβτ)

f(βτ)
· f(βτ)

f(τ)
.

Thus, we must have that

j(αβ, τ) = j(α, βτ)j(β, τ).

This consistency relation is what we mean by an automorphy factor, and is quite subtle.
For k ∈ Z, j(γ, τ) satisfies this, but for k 6∈ Z, this can fail! In particular, we will
care quite a lot about k ∈ 1

2
+ Z later (its needed to solve the Congruent Number

Problem), and so the definition of modular forms in that case must be modified to fix
this consistency condition first.

0.2. The Fundamental Domain. Just like parallelograms were fundamental domains
for the action of a lattice Λ on C by translation, there will be a nice fundamental
domain for the action of Γ on H by fractional linear transformations. Recall that this
means it will be a set where every point is equivalent to exactly one point inside of the
fundamental domain under a fractional linear transformation.

Let’s draw the famous picture and then prove its correct.

In short, the interior is the region bounded by the lines u = ±1
2

and the unit circle, but
you have to be careful about the boundary so that equivalent points aren’t represented
more than once. In the hyperbolic geometry, this is a hyperbolic triangle, and the
two sides meet at i∞. The points ω, i will play a special role, as we’ll soon see.

Before showing this is a fundamental domain, let’s first discuss what actually happens
on the boundary, and why we exclude some points on the boundary of the closure of F .
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Theorem 0.1. The region F is a fundamental domain for Γ 	 H.

Proof. Let τ ∈ H. First we show we can move it into Γ. We saw before that

Im(γτ) =
u

|cτ + d|2
.

The values cτ + d range over Zτ + Z, a lattice. Thus, the non-zero values are bounded
away from zero (there is some non-zero lattice vector of minimal length; lattices are
discrete). Thus, there is some γ which makes |cτ +d| minimal, and hence makes Im(γτ)
maximal. Shifting by powers of T you can then force the point to satisfy

−1

2
≤ Re(T nγτ) <

1

2
.

Thus, we can assume that γτ is in the strip −1
2
≤ u < 1

2
.

If γτ 6∈ F , then |γτ | < 1 (unless its on the right arc of the unit circle which we
excluded, but then just apply S to get in F). But then

Im(Sγτ) =
Im(γτ)

|γτ |2
> Im(γτ),

a contradiction. Thus, γτ ∈ F , and we’re done.
We now need to show uniqueness. We already drew pictures of what happens on

the boundaries, and carefully looking at those and the definition of F shows that no
two boundary points are Γ-equivalent. Now let’s look at the interior. Suppose that
τ1, τ2 ∈ F◦ are Γ-equivalent. WLOG, say v2 ≥ v1, and say τ2 = γτ1. By our formula for
Im(γτ), we have |cτ1 + d| ≤ 1.

Since τ1 ∈ F◦, this is impossible if |c| ≥ 2. This leaves several possibilities.
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Case i). c = 0, d = ±1: This is impossible as γ = Tm then but this takes points
outside of F .

Case ii). c = ±1, d = 0: Then | ± τ1| = |τ1| ≤ 1 and so τ1 is on the unit circle. But
we’ve already talked about boundary points.

Case iii). c = d = ±1: Then |τ1 + 1| ≤ 1, then τ1 is at most distance 1 away from
(−1, 0). As the following picture illustrates, the only point inside of the Fundamental
Domain satisfying this is ω, which is again not in the interior.

Case iv). c = −d = ±1: Just as in the last case, we find that τ1 = ω + 1 is not in
the interior, as illustrated by the following picture:

�

We will also be interested in the stabilizers of points; the subgroup of Γ consisting
of those matrices which fix a point. There are always two trivial points in the stabilizer,
namely ±I. Usually, this is it. Similar calculations as in the last proof give the following.

Theorem 0.2. The stabilizer of a point τ ∈ F is given by:

Γτ =


{±I}, if τ 6= i, ω

{±I,±S} if τ = i,

{±I,±ST,±(ST )2} if τ = ω.
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In particular, the order of the stabilizer is either 2, 4, or 6 depending on these cases.

Exercise 2. Prove this.
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