Mock modular Eisenstein series and holomorphic projection

Larry Rolen

Vanderbilt University

Classical Eisenstein series

- The classical level 1 weight k Eisenstein series are ($k \geq 4$)

$$
G_{k}(\tau):=\frac{1}{2} \zeta(1-k)+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n},
$$

Classical Eisenstein series

- The classical level 1 weight k Eisenstein series are ($k \geq 4$)

$$
G_{k}(\tau):=\frac{1}{2} \zeta(1-k)+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n},
$$

with $q:=e^{2 \pi i \tau}$ and $\sigma_{k-1}(n):=\sum_{d \mid n} d^{k-1}$.

Classical Eisenstein series

- The classical level 1 weight k Eisenstein series are $(k \geq 4)$

$$
G_{k}(\tau):=\frac{1}{2} \zeta(1-k)+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

with $q:=e^{2 \pi i \tau}$ and $\sigma_{k-1}(n):=\sum_{d \mid n} d^{k-1}$.

- Hecke defined Eisenstein series with Nebentypus:

$$
G_{k, \chi}(\tau):=\frac{1}{2} L(1-k, \chi)+\sum_{n \geq 1} \sigma_{k-1, \chi} q^{n}
$$

Classical Eisenstein series

- The classical level 1 weight k Eisenstein series are ($k \geq 4$)

$$
G_{k}(\tau):=\frac{1}{2} \zeta(1-k)+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

with $q:=e^{2 \pi i \tau}$ and $\sigma_{k-1}(n):=\sum_{d \mid n} d^{k-1}$.

- Hecke defined Eisenstein series with Nebentypus:

$$
G_{k, \chi}(\tau):=\frac{1}{2} L(1-k, \chi)+\sum_{n \geq 1} \sigma_{k-1, \chi} q^{n}
$$

$$
\sigma_{k-1, \chi}(n):=\sum_{d \mid n} \chi(d) d^{n} .
$$

The case of weight 2

- The series $G_{2}(\tau)$ is not modular, but rather the non-holomorphic "correction"

$$
E_{2}^{*}(\tau):=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n}-\frac{3}{\pi v}, \quad(v:=\operatorname{lm}(\tau))
$$

The case of weight 2

- The series $G_{2}(\tau)$ is not modular, but rather the non-holomorphic "correction"

$$
E_{2}^{*}(\tau):=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n}-\frac{3}{\pi v}, \quad(v:=\operatorname{lm}(\tau))
$$

- E_{2} / G_{2} is the first example of a mock modular form.

Motivating question

Question

Are there similar formulas for other types of mock modular forms? Is there a family of simple combinatorial mock modular forms?

Class number generating function

- Next simplest mock modular form: $\mathcal{H}(\tau):=\sum_{n \geq 0} H(n) q^{n}$, where $H(n)$ is the Hurwitz class number, $H(0):=-1 / 12$.

Class number generating function

- Next simplest mock modular form: $\mathcal{H}(\tau):=\sum_{n \geq 0} H(n) q^{n}$, where $H(n)$ is the Hurwitz class number, $H(0):=-1 / 12$.

Theorem (Zagier)
$\widehat{\mathcal{H}}(\tau):=\mathcal{H}(\tau)+\frac{1}{4 \sqrt{\pi}} \sum_{n \geq 1} n \Gamma\left(-\frac{1}{2}, 4 \pi n^{2} \operatorname{Im}(\tau)\right) q^{-n^{2}}+\frac{1}{8 \pi \sqrt{\operatorname{lm}(\tau)}}$ is modular of weight $3 / 2$.

Class number generating function

- Next simplest mock modular form: $\mathcal{H}(\tau):=\sum_{n \geq 0} H(n) q^{n}$, where $H(n)$ is the Hurwitz class number, $H(0):=-1 / 12$.

Theorem (Zagier)

$\widehat{\mathcal{H}}(\tau):=\mathcal{H}(\tau)+\frac{1}{4 \sqrt{\pi}} \sum_{n \geq 1} n \Gamma\left(-\frac{1}{2}, 4 \pi n^{2} \operatorname{Im}(\tau)\right) q^{-n^{2}}+\frac{1}{8 \pi \sqrt{\operatorname{Im}(\tau)}}$ is modular of weight $3 / 2$.

- Hurwitz-Kronecker class number relation:

$$
\sum_{m \in \mathbb{Z}} H\left(4 n-m^{2}\right)=2 \sigma_{1}(n)-\sum_{d \mid n} \min (d, n / d) .
$$

The method of Poincaré series

- Petsersson slash action:

$$
\left.f\right|_{k} \gamma:=(c \tau+d)^{-k} f(\gamma \cdot \tau), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

The method of Poincaré series

- Petsersson slash action:

$$
\left.f\right|_{k} \gamma:=(c \tau+d)^{-k} f(\gamma \cdot \tau), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

- Eisenstein series are the group average:

$$
G_{k}(\tau):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1\right|_{k} \gamma .
$$

The method of Poincaré series

- Petsersson slash action:

$$
\left.f\right|_{k} \gamma:=(c \tau+d)^{-k} f(\gamma \cdot \tau), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

- Eisenstein series are the group average:

$$
G_{k}(\tau):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1\right|_{k} \gamma .
$$

- Exponential Poincaré series:

$$
P_{k, m}(\tau):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})}\left(q^{m}\right)\right|_{k} \gamma .
$$

The method of Poincaré series

- Petsersson slash action:

$$
\left.f\right|_{k} \gamma:=(c \tau+d)^{-k} f(\gamma \cdot \tau), \quad \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

- Eisenstein series are the group average:

$$
G_{k}(\tau):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1\right|_{k} \gamma .
$$

- Exponential Poincaré series:

$$
P_{k, m}(\tau):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})}\left(q^{m}\right)\right|_{k} \gamma .
$$

- Petersson coefficient formula for $f \in S_{k}$:

$$
\left\langle f, P_{k, m}\right\rangle \doteq\left[q^{m}\right] f(\tau)
$$

Sturm's method of holomorphic projection

- Let f be a non-holomorphic modular form with expansion

$$
f(\tau)=\sum_{n} a_{f}(n, v) q^{n}
$$

Sturm's method of holomorphic projection

- Let f be a non-holomorphic modular form with expansion

$$
f(\tau)=\sum_{n} a_{f}(n, v) q^{n}
$$

- If it converges nicely, let $a(n)$ be the appropriate multiple of

$$
\left\langle f, P_{k, n}\right\rangle .
$$

Sturm's method of holomorphic projection

- Let f be a non-holomorphic modular form with expansion

$$
f(\tau)=\sum_{n} a_{f}(n, v) q^{n}
$$

- If it converges nicely, let $a(n)$ be the appropriate multiple of

$$
\left\langle f, P_{k, n}\right\rangle .
$$

- Then the following is modular of weight k :

$$
\pi_{\mathrm{hol}}(f):=\sum_{n} a(n) q^{n} .
$$

Sketch of proof of class number relation

- Let $f(\tau):=\widehat{\mathcal{H}}(4 \tau) \cdot \theta(\tau)$, with Jacobi's $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

Sketch of proof of class number relation

- Let $f(\tau):=\widehat{\mathcal{H}}(4 \tau) \cdot \theta(\tau)$, with Jacobi's $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

$$
\pi_{\text {hol }}(f)=\pi_{\text {hol }}\left(\mathcal{H}(4 \tau) \theta(\tau)+\sum(\text { incomplete gamma's }) \theta(\tau)\right)
$$

Sketch of proof of class number relation

- Let $f(\tau):=\widehat{\mathcal{H}}(4 \tau) \cdot \theta(\tau)$, with Jacobi's $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

$$
\pi_{\text {hol }}(f)=\pi_{\text {hol }}\left(\mathcal{H}(4 \tau) \theta(\tau)+\sum(\text { incomplete gamma's }) \theta(\tau)\right)
$$

- Special function identity:

$$
\int_{0}^{\infty} \Gamma(1-k, 4 \pi|m| v) e^{-4 \pi n v} v^{k+\ell-2} d v=\frac{(4 \pi|m|)^{k-1} \Gamma(\ell)}{(k+\ell-1)(4 \pi(n-m))^{2}}{ }^{2} F_{1}(1, \ell, k+\ell ; n /(n-m)) .
$$

Sketch of proof of class number relation

- Let $f(\tau):=\widehat{\mathcal{H}}(4 \tau) \cdot \theta(\tau)$, with Jacobi's $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

$$
\pi_{\text {hol }}(f)=\pi_{\text {hol }}\left(\mathcal{H}(4 \tau) \theta(\tau)+\sum(\text { incomplete gamma's }) \theta(\tau)\right)
$$

- Special function identity:

$$
\begin{gathered}
\int_{0}^{\infty} \Gamma(1-k, 4 \pi|m| v) e^{-4 \pi n v} v^{k+\ell-2} d v=\frac{(4 \pi|m|)^{k-1} \Gamma(\ell)}{(k+\ell-1)(4 \pi(n-m))^{\ell}}{ }_{2} F_{1}(1, \ell, k+\ell ; n /(n-m)) . \\
\pi_{\mathrm{hol}}(f)=\sum_{n}\left[\left(\sum_{m} H\left(4 n-m^{2}\right)\right)+\sum_{d \mid n} \min (d, n / d)\right] q^{n} .
\end{gathered}
$$

Sketch of proof of class number relation

- Let $f(\tau):=\widehat{\mathcal{H}}(4 \tau) \cdot \theta(\tau)$, with Jacobi's $\theta(\tau):=\sum_{n \in \mathbb{Z}} q^{n^{2}}$.

$$
\pi_{\text {hol }}(f)=\pi_{\text {hol }}\left(\mathcal{H}(4 \tau) \theta(\tau)+\sum(\text { incomplete gamma's }) \theta(\tau)\right)
$$

- Special function identity:

$$
\begin{gathered}
\int_{0}^{\infty} \Gamma(1-k, 4 \pi|m| v) e^{-4 \pi n v} v^{k+\ell-2} d v=\frac{(4 \pi|m|)^{k-1} \Gamma(\ell)}{(k+\ell-1)(4 \pi(n-m))^{\ell}}{ }^{2} F_{1}(1, \ell, k+\ell ; n /(n-m)) . \\
\pi_{\mathrm{hol}}(f)=\sum_{n}\left[\left(\sum_{m} H\left(4 n-m^{2}\right)\right)+\sum_{d \mid n} \min (d, n / d)\right] q^{n} .
\end{gathered}
$$

Then compute $\pi_{\text {hol }}(f)=\frac{-1}{12} E_{2}(\tau)$.

Recursions for mock theta functions

- Similar recursions determined for Ramanujan's 3rd order mock theta function $f(q)$ by Imamoglu, Raum, and Richter.

Recursions for mock theta functions

- Similar recursions determined for Ramanujan's 3rd order mock theta function $f(q)$ by Imamoglu, Raum, and Richter.
- These are analogous to Conway-Norton's theory of replicable functions, and were crucial in the proof of Duncan, Griffin, and Ono of the Umbral Moonshine Conjecture.

Mock Eisenstein series

- We use holomorphic projection to construct mock modular forms with combinatorial coefficients.

Mock Eisenstein series

- We use holomorphic projection to construct mock modular forms with combinatorial coefficients.
- Define the twisted small divisor sum

$$
\sigma_{\psi}^{\mathrm{sm}}(n):=\sum_{\substack{d \mid n \\ 1 \leq d \leq n / d \\ d \equiv n / d \\(\bmod 2)}} \psi\left(\frac{(n / d)^{2}-d^{2}}{4}\right) d
$$

Mock Eisenstein series

- We use holomorphic projection to construct mock modular forms with combinatorial coefficients.
- Define the twisted small divisor sum

$$
\sigma_{\psi}^{\mathrm{sm}}(n):=\sum_{\substack{d \mid n \\ 1 \leq d \leq n / d \\ d \equiv n / d \\(\bmod 2)}} \psi\left(\frac{(n / d)^{2}-d^{2}}{4}\right) d .
$$

- Define the Shimura theta function:

$$
\theta_{\psi}(\tau):=\sum_{n \geq 1} n^{\frac{1-\psi(-1)}{2}} \psi(n) q^{n^{2}}
$$

Mock Eisenstein series

- We use holomorphic projection to construct mock modular forms with combinatorial coefficients.
- Define the twisted small divisor sum

$$
\sigma_{\psi}^{\mathrm{sm}}(n):=\sum_{\substack{d \mid n \\ 1 \leq d \leq n / d \\ d \equiv n / d \\(\bmod 2)}} \psi\left(\frac{(n / d)^{2}-d^{2}}{4}\right) d
$$

- Define the Shimura theta function:

$$
\theta_{\psi}(\tau):=\sum_{n \geq 1} n^{\frac{1-\psi(-1)}{2}} \psi(n) q^{n^{2}}
$$

- The mock Eisenstein series is

$$
\mathcal{E}_{\psi}(\tau):=\frac{1}{\theta_{\psi}(\tau)} \cdot \sum_{n \geq 1} \sigma_{\psi}^{\mathrm{sm}}(n) q^{n}
$$

Main theorem

Theorem (Mertens-Ono-R.)
The mock Eisenstein series \mathcal{E}_{ψ} is a weight
$1+\psi(-1) / 2 \in\{1 / 2,3 / 2\}$ mock modular form with (possible) poles on the upper half plane. Its shadow is (a multiple of) the Shimura theta function θ_{ψ}.

Applications to congruences

Theorem (Mertens-Ono-R.)
For any prime p and any $a, b \in \mathbb{N}$, there is a weight 2 modular form $F_{a, b}$ such that

$$
\left(\theta_{\psi}\left(p^{2 a} \tau\right) \mathcal{E}_{\psi}(\tau)\right) \mid U\left(p^{b}\right) \equiv F_{a, b} \quad\left(\bmod p^{\min (a, b)}\right)
$$

Example 1

- When $\psi=\chi_{12}:=\left(\frac{12}{.}\right)$, then

$$
\mathcal{E}_{\chi_{12}}(\tau)=-2 q^{-1} \sum_{n \geq 1} \operatorname{spt}(n) q^{24 n}
$$

Example 1

- When $\psi=\chi_{12}:=\left(\frac{12}{.}\right)$, then

$$
\mathcal{E}_{\chi_{12}}(\tau)=-2 q^{-1} \sum_{n \geq 1} \operatorname{spt}(n) q^{24 n}
$$

where spt(n) is Andrews' function counting the number of smallest parts of partitions of n.

Example 1

- When $\psi=\chi_{12}:=\left(\frac{12}{.}\right)$, then

$$
\mathcal{E}_{\chi_{12}}(\tau)=-2 q^{-1} \sum_{n \geq 1} \operatorname{spt}(n) q^{24 n}
$$

where spt(n) is Andrews' function counting the number of smallest parts of partitions of n.

- Our theorem above recovers known congruences and p-adic properties due to Andrews-Garvan, Ahlgren-Kim, and Belmont-Lee-Musat-Trebat-Leder.

Example 2

- Let $\operatorname{cpt}(n)$ count the total number of parts in all partitions of n into consecutive integers.

Example 2

- Let $\operatorname{cpt}(n)$ count the total number of parts in all partitions of n into consecutive integers.
- Then

$$
\theta_{\chi_{2}}(\tau) \cdot \mathcal{E}_{\chi_{2}}(\tau)=2 \sum_{n \geq 1}(-1)^{n} \operatorname{cpt}(n) q^{8 n}
$$

Example 3

- The function

$$
\frac{24 \theta_{\chi-4} \cdot \mathcal{E}_{\chi-4}(\tau / 8)-E_{2}(\tau)}{\eta(\tau)^{3}}
$$

was studied by Eguchi-Taormina and Eguchi-Ooguri-Taormina-Yang in relation to the elliptic genus, and has been important in Mathieu Moonshine, SO(3) Donaldson invariants of $\mathbb{C} P^{2}$, and in Dabholkar-Murthy-Zagier's work on quantum black holes.

