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Classical Eisenstein series

The classical level 1 weight k Eisenstein series are (k ≥ 4)

Gk(τ) :=
1

2
ζ(1− k) +

∑
n≥1

σk−1(n)qn,

with q := e2πiτ and σk−1(n) :=
∑

d |n d
k−1.

Hecke defined Eisenstein series with Nebentypus:

Gk,χ(τ) :=
1

2
L(1− k, χ) +

∑
n≥1

σk−1,χq
n,

σk−1,χ(n) :=
∑

d |n χ(d)dn.
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Mock modular Eisenstein series and holomorphic projection

The case of weight 2

The series G2(τ) is not modular, but rather the
non-holomorphic “correction”

E ∗2 (τ) := 1− 24
∑
n≥1

σ1(n)qn − 3

πv
, (v := Im(τ)).

E2/G2 is the first example of a mock modular form.
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Motivating question

Question

Are there similar formulas for other types of mock modular forms?
Is there a family of simple combinatorial mock modular forms?
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Class number generating function

Next simplest mock modular form: H(τ) :=
∑

n≥0 H(n)qn,
where H(n) is the Hurwitz class number, H(0) := −1/12.

Theorem (Zagier)

Ĥ(τ) := H(τ) + 1
4
√
π

∑
n≥1 nΓ

(
−1

2 , 4πn
2 Im(τ)

)
q−n

2
+ 1

8π
√

Im(τ)

is modular of weight 3/2.

Hurwitz-Kronecker class number relation:∑
m∈Z

H(4n −m2) = 2σ1(n)−
∑
d |n

min(d , n/d).
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Ĥ(τ) := H(τ) + 1
4
√
π

∑
n≥1 nΓ

(
−1

2 , 4πn
2 Im(τ)

)
q−n

2
+ 1

8π
√

Im(τ)

is modular of weight 3/2.

Hurwitz-Kronecker class number relation:∑
m∈Z

H(4n −m2) = 2σ1(n)−
∑
d |n

min(d , n/d).
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The method of Poincaré series

Petsersson slash action:

f |kγ := (cτ + d)−k f (γ · τ), γ ∈ SL2(Z).

Eisenstein series are the group average:

Gk(τ) :=
∑

γ∈Γ∞\SL2(Z)

1|kγ.

Exponential Poincaré series:

Pk,m(τ) :=
∑

γ∈Γ∞\SL2(Z)

(qm)|kγ.

Petersson coefficient formula for f ∈ Sk :

〈f ,Pk,m〉
.

= [qm]f (τ).



Mock modular Eisenstein series and holomorphic projection

The method of Poincaré series
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Petsersson slash action:

f |kγ := (cτ + d)−k f (γ · τ), γ ∈ SL2(Z).

Eisenstein series are the group average:

Gk(τ) :=
∑

γ∈Γ∞\SL2(Z)

1|kγ.

Exponential Poincaré series:

Pk,m(τ) :=
∑

γ∈Γ∞\SL2(Z)

(qm)|kγ.

Petersson coefficient formula for f ∈ Sk :

〈f ,Pk,m〉
.

= [qm]f (τ).



Mock modular Eisenstein series and holomorphic projection

Sturm’s method of holomorphic projection

Let f be a non-holomorphic modular form with expansion

f (τ) =
∑
n

af (n, v)qn.

If it converges nicely, let a(n) be the appropriate multiple of

〈f ,Pk,n〉 .

Then the following is modular of weight k :

πhol(f ) :=
∑
n

a(n)qn.
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Sketch of proof of class number relation

Let f (τ) := Ĥ(4τ) · θ(τ), with Jacobi’s θ(τ) :=
∑

n∈Z q
n2

.

πhol(f ) = πhol

(
H(4τ)θ(τ) +

∑
(incomplete gamma′s)θ(τ)

)
.

Special function identity:

∫∞
0 Γ(1−k,4π|m|v)e−4πnvvk+`−2dv= (4π|m|)k−1Γ(`)

(k+`−1)(4π(n−m))`
2F1(1,`,k+`;n/(n−m)).

πhol(f ) =
∑
n

(∑
m

H(4n −m2)

)
+
∑
d |n

min(d , n/d)

 qn.

Then compute πhol(f ) = −1
12 E2(τ).
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Mock modular Eisenstein series and holomorphic projection

Recursions for mock theta functions

Similar recursions determined for Ramanujan’s 3rd order mock
theta function f (q) by Imamoglu, Raum, and Richter.

These are analogous to Conway-Norton’s theory of replicable
functions, and were crucial in the proof of Duncan, Griffin,
and Ono of the Umbral Moonshine Conjecture.
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Mock Eisenstein series

We use holomorphic projection to construct mock modular
forms with combinatorial coefficients.

Define the twisted small divisor sum

σsmψ (n) :=
∑
d |n

1≤d≤n/d
d≡n/d (mod 2)

ψ

(
(n/d)2 − d2

4

)
d .

Define the Shimura theta function:

θψ(τ) :=
∑
n≥1

n
1−ψ(−1)

2 ψ(n)qn
2
.

The mock Eisenstein series is

Eψ(τ) :=
1

θψ(τ)
·
∑
n≥1

σsmψ (n)qn.
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Main theorem

Theorem (Mertens-Ono-R.)

The mock Eisenstein series Eψ is a weight
1 + ψ(−1)/2 ∈ {1/2, 3/2} mock modular form with (possible)
poles on the upper half plane. Its shadow is (a multiple of) the
Shimura theta function θψ.
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Applications to congruences

Theorem (Mertens-Ono-R.)

For any prime p and any a, b ∈ N, there is a weight 2 modular
form Fa,b such that(

θψ(p2aτ)Eψ(τ)
) ∣∣U(pb) ≡ Fa,b (mod pmin(a,b)).
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Example 1

When ψ = χ12 :=
(

12
·
)
, then

Eχ12(τ) = −2q−1
∑
n≥1

spt(n)q24n,

where spt(n) is Andrews’ function counting the number of
smallest parts of partitions of n.

Our theorem above recovers known congruences and p-adic
properties due to Andrews-Garvan, Ahlgren-Kim, and
Belmont-Lee-Musat-Trebat-Leder.
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Example 2

Let cpt(n) count the total number of parts in all partitions of
n into consecutive integers.

Then
θχ2(τ) · Eχ2(τ) = 2

∑
n≥1

(−1)ncpt(n)q8n.
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Example 3

The function

24θχ−4 · Eχ−4(τ/8)− E2(τ)

η(τ)3

was studied by Eguchi-Taormina and Eguchi-Ooguri-
Taormina-Yang in relation to the elliptic genus, and has been
important in Mathieu Moonshine, SO(3) Donaldson invariants
of CP2, and in Dabholkar-Murthy-Zagier’s work on quantum
black holes.


