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Zeta-polynomials for modular form periods

Introduction and Statement of Results

Riemann’s zeta-function

Definition (Riemann)

For Re(s) > 1, define the zeta-function by

⇣(s) :=
1X

n=1

1

ns
.

Theorem (Fundamental Theorem)

1 The function ⇣(s) has an analytic continuation to C (apart
from a simple pole at s = 1 with residue 1).

2 We have the functional equation

⇡� s

2�
⇣ s
2

⌘
⇣(s) = ⇡� (1�s)

2 · �
✓
1� s

2

◆
· ⇣(1� s).
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Introduction and Statement of Results

$1 million prize problem

Conjecture (Riemann)

Apart from the negative evens, the zeros of ⇣(s) satisfy Re(s) = 1
2 .

Remarks

1 The “line of symmetry” for s  ! 1� s is Re(s) = 1
2 .

2 The first “gazillion” zeros satisfy RH (Odlyzko).
Over 40% of the zeros satisfy RH (Selberg, Levinson, Conrey).
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Introduction and Statement of Results

The values ⇣(�n)

Theorem (Euler)

As a power series in t, we have

t

1� e�t

= 1 +
1

2
t � t

1X

n=1

⇣(�n) · t
n

n!
.

Remark

This series is essentially the generating function for K -groups of Q.
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Manin’s Theory of Zeta-polynomials

Definition (Manin)

A polynomial Z (s) is a zeta-polynomial if it satisfies:

It is arithmetic-geometric in origin.

For s 2 C we have Z (s) = ±Z (1� s).

If Z (⇢) = 0, then Re(⇢) = 1/2.

The values Z (�n) have a “nice” generating function

The values Z (�n) encode arithmetic-geometric information.
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There is a theory of zeta-polynomials for modular form periods.

Theorem (Main Theorem)

Manin’s Conjecture is true.
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Introduction and Statement of Results

Fundamental Theorem for modular L-functions

Theorem (Hecke, Atkin-Lehner, Shimura, Manin, and others)

If f 2 S
k

(�0(N)) is a newform, then the following are true:

1 L(f , s) has an analytic continuation to C.

2 If ⇤(f , s) :=
⇣p

N

2⇡

⌘
s

�(s)L(f , s), then 9 ✏(f ) 2 {±1} for which

⇤(f , s) = ✏(f ) · ⇤(f , k � s).

3 There are numbers !±
f

such that for 1  j  k � 1

L(f , j) 2 Q · (2⇡i)j · !±
f

.
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Introduction and Statement of Results

Critical Values and Weighted Moments

Definition (Manin, Shimura)

If f 2 S
k

(�0(N)) is a newform, then its critical L-values are

{L(f , 1), L(f , 2), L(f , 3), . . . , L(f , k � 1)} .

Definition (Ono-R-Sprung)

If m � 1, then we define the weighted moments

M
f

(m) :=
1

(k � 2)!

k�2X

j=0

✓
k � 2

j

◆
⇤(f , j + 1) · jm.
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Introduction and Statement of Results

The zeta-polynomials (k � 4 even)

Definition (Ono-R-Sprung)

The zeta-polynomial for f is

Z
f

(s) :=
k�2X

h=0

(�s)h
k�2�hX

m=0

✓
m + h

h

◆
· s(k � 2,m + h) ·M

f

(m),

where the (signed) Stirling numbers of the first kind are given by

(x)
n

= x(x � 1)(x � 2) · · · (x � n + 1) =:
nX

m=0

s(n,m)xm.
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Introduction and Statement of Results

The s(n, k) form Pascal-type triangles

We have the recurrence

s(n, k) = s(n � 1, k � 1)� (n � 1) · s(n � 1, k).

1
0 1

0 �1 1
0 2 �3 1

0 �6 11 �6 1
0 24 �50 35 �10 1

0 �120 274 �225 85 �15 1

Remark

Z
f

(s) is a cobbling of layers of these weighted by moments M
f

(m).



Zeta-polynomials for modular form periods

Introduction and Statement of Results

The s(n, k) form Pascal-type triangles

We have the recurrence

s(n, k) = s(n � 1, k � 1)� (n � 1) · s(n � 1, k).

1
0 1

0 �1 1
0 2 �3 1

0 �6 11 �6 1
0 24 �50 35 �10 1

0 �120 274 �225 85 �15 1

Remark

Z
f

(s) is a cobbling of layers of these weighted by moments M
f

(m).



Zeta-polynomials for modular form periods

Introduction and Statement of Results

The s(n, k) form Pascal-type triangles

We have the recurrence

s(n, k) = s(n � 1, k � 1)� (n � 1) · s(n � 1, k).

1
0 1

0 �1 1
0 2 �3 1

0 �6 11 �6 1
0 24 �50 35 �10 1

0 �120 274 �225 85 �15 1

Remark

Z
f

(s) is a cobbling of layers of these weighted by moments M
f

(m).



Zeta-polynomials for modular form periods

Introduction and Statement of Results

Functional Equations and the Riemann Hypothesis

Theorem 1 (Ono-R-Sprung)

If f 2 S
k

(�0(N)) is an even weight k � 4 newform, then we have:

1 For all s 2 C we have that Z
f

(s) = ✏(f )Z
f

(1� s).

2 If Z
f

(⇢) = 0, then Re(⇢) = 1/2.

Remark

To completely obtain Manin’s theory, we must show:

The values Z
f

(�n) have a “nice” generating function.

The Z (�n) encode arithmetic-geometric information.
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Figure: The roots of Z�(s)
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Introduction and Statement of Results

A Nice Generating Function

Theorem 2 (Ono-R-Sprung)

Define the normalized period polynomial for f by

R
f

(z) :=
k�2X

j=0

✓
k � 2

j

◆
· ⇤(f , k � 1� j) · z j .

Then we have that

R
f

(z)

(1� z)k�1
=

1X

n=0

Z
f

(�n)zn.

Remark (Euler)

t

1� e�t

= 1 +
1

2
t � t

1X

n=1

⇣(�n) · t
n

n!
.
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Arithmetic Geometric Information

Corollary (Ono-R-Sprung)

Assuming the Bloch-Kato Conjecture, we have that

M
f

(m) =
X

0jk�2

^C (j + 1)jm.
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Combinatorial Polynomials H±
k (s)

Definition (Binomial Coe�cient)

If x , y 2 C, then the complex binomial coe�cient

�
x

y

�
is

✓
x

y

◆
:=

�(x + 1)

�(y + 1)�(x � y + 1)
.

Definition (Special Polynomials)

If k � 4 is even, then

H+
k

(s) :=

✓
s + k � 2

k � 2

◆
+

✓
s

k � 2

◆
,

H�
k

(s) :=
k�3X

j=0

✓
s � j + k � 3

k � 3

◆
.
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Introduction and Statement of Results

The H±
k (�s) Approximate Zf (s)

Theorem 3 (Ono-R-Sprung)

Suppose that k � 4 and ✏ 2 {±1}. Then we have that

lim
N!+1

Z
f

(s) = H✏
k

(�s),

where f 2 S
k

(�0(N)) are chosen with ✏(f ) = ✏.

Remark

This o↵ers an unexpected connection to polytopes.
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Ehrhart Polynomials

Definition

Given a d-dimensional integral lattice polytope in Rn, the Ehrhart

polynomial L
p

(x) is determined by

L
p

(m) = # {p 2 Zn : p 2 mP} .

Example

The polynomials H�
k

(s) are the Ehrhart polynomials of the simplex

conv

8
<

:e1, e2, . . . , e
k�3,�

k�3X

j=1

e
j

9
=

; .
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Proof of Theorems 1 and 2

Theorem 1 (Ono-R-Sprung)

If f 2 S
k

(�0(N)) is an even weight k � 4 newform, then we have:

1 For all s 2 C we have that Z
f

(s) = ✏(f )Z
f

(1� s).

2 If Z
f

(⇢) = 0, then Re(⇢) = 1/2.

Theorem 2 (Ono-R-Sprung)

Define the period polynomial for f by

R
f

(z) :=
k�2X

j=0

✓
k � 2

j

◆
· ⇤(f , k � 1� j) · z j .

Then we have that

R
f

(z)

(1� z)k�1
=

1X

n=0

Z
f

(�n)zn.
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Theorem (Rodriguez-Villegas (2002))

Suppose that U(z) 2 R[z ] is a degree e polynomial with U(1) 6= 0.
Then there is a polynomial H(z) for which

U(z)

(1� z)e+1
=

1X

n=0

H(n)zn.

If all roots of U(z) are on |z | = 1, then we have:

1 All roots of Z (s) := H(�s) lie on Re(z) = 1/2.

2 We have that
Z (1� s) = ±Z (s).
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Sketch of the proof of Theorems 1 and 2.

For even weight k � 4 newforms f we must prove that

R
f

(⇢) = 0 =) |z | = 1.

Make the definition of Z
f

(s) := H(�s) explicit (i.e. Stirling
numbers and weight moments).
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Generating Function for Critical Values

Definition

If f 2 S
k

(�0(N)) is a newform, then its period polynomial is

r
f

(X ) :=
k�2X

m=0

L(f , k � 1�m) · (2⇡iX )m

m!
.

Problems (Open)

1 Determine the r
f

(X ).

2 Study the “distribution” of the zeros of r
f

(X ).
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Example. f 2 S4(�0(8))

Let f (⌧) = q�4q3�2q5+ · · · 2 S4(�0(8)) be the unique newform.

1 We find numerically that

L(f , 1) ⇡ 0.354500683730965,

L(f , 2) ⇡ 0.690031163123398,

L(f , 3) ⇡ 0.874695377085079.

2 This means that

r
f

(X ) ⇡ �6.9975X 2 + 4.33559iX + 0.87469.

3 Its roots are ±0.170376720591406 + 0.309793113352311i ,
which have norm

2 approximately 0.125000000 ⇡ 1
8 .
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“Riemann Hypothesis” for Period Polynomials

Conjecture (RHPP)

Suppose that f 2 S
k

(�0(N)) is a newform with k � 4.
If r

f

(z) = 0, then |z | = 1p
N

.

Remark

The circle |z | = 1p
N

is the “symmetry” for a functional equation.
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In 2013 Conrey, Farmer, and Immamoḡlu proved that zeros of
the “odd part” of r

f

(X ) have |z | = 1 when N = 1.

El-Guindy and Raji proved the N = 1 case.
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Recent results on RHPP

Theorem 4 (Jin-Ma-Ono-Soundararajan)

The Riemann Hypothesis for period polynomials is true.

Corollary (Jin-Ma-Ono-Soundararajan)

If f 2 S
k

(�0(N)) is an even weight k � 4 newform, then all of the
zeros of R

f

(z) satisfy |z | = 1.
In particular, Theorems 1 and 2 are true.
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Equidistribution

Theorem 5 (Jin-Ma-Ono-Soundararajan)

For fixed �0(N), as k ! +1, the zeros of r
f

(X ) = 0 become
equidistributed on the circle with radius 1p

N

.

Question

Can one do better than equidistribution?



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Equidistribution

Theorem 5 (Jin-Ma-Ono-Soundararajan)

For fixed �0(N), as k ! +1, the zeros of r
f

(X ) = 0 become
equidistributed on the circle with radius 1p

N

.

Question

Can one do better than equidistribution?



Zeta-polynomials for modular form periods

Proof of Theorems 1 and 2

Theorem 6 (Jin-Ma-Ono-Soundararajan)

If either N or k is large enough, then the roots of r
f

(X ) are:

X` =
1

i
p
N

· exp
✓
i✓` + O

✓
1

2k
p
N

◆◆
,

where for 0  `  k � 3 we let ✓` 2 [0, 2⇡) be the solution to:

k � 2

2
· ✓` �

2⇡p
N

sin(✓`) =

(
⇡
2 + `⇡ if ✏(f ) = 1,

`⇡ if ✏(f ) = �1.

Remarks

For fixed k , the roots of r
f

(X ) converge as N ! +1.

This proves Theorem 3 that for fixed ✏(f ) 2 {±} we have

lim
N!+1

Z
f

(s) = H±
k

(�s).
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Proof of RHPP when k = 4

We care about the zeros of

�2L(f , 1)⇡2X 2 + 2⇡iL(f , 2)X + L(f , 3) = 0.

Therefore, we can use the quadratic equation.

Using the functional equation to relate L(f , 1) and L(f , 3).
The conclusion is trivial if L(f , 2) = 0.
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Easy Case of Theorem 4

Proof of RHPP when k = 4 cont.

If L(f , 2) 6= 0, then we need to show N

⇡2L(f , 3)2 � L(f , 2)2.

Then use Hadamard factorization of ⇤(f , s)

⇤(f , s) = eA+Bs

Y

⇢

✓
1� s

⇢

◆
exp(s/⇢).

Now we always have 3/2  Re(⇢)  5/2.

This means that ⇤(f , 3) � ⇤(f , 2).
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Proving RHPP

Analytic Definition of rf (X )

Lemma

If f 2 S
k

(�0(N)) is a newform, then

r
f

(X ) = �(2⇡i)k�1

(k � 2)!
·
Z

i1

0
f (⌧)(⌧ � X )k�2d⌧.
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Proving RHPP

PSL2(R)+ action

Definition

If �(z) 2 C[z ] with deg(�)  k � 2 and
�
a b

c d

�
2 PSL2(R)+, then

�|
�
a b

c d

�
(z):=(ad � bc)1�

k

2 · (cz + d)k�2 · �
✓
az + b

cz + d

◆
.

Remark

This defines a “modular action” on

V
k�2 := {� 2 C[z ] : deg(�)  k � 2} .
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Proving RHPP

Functional Equation for rf (X )

Lemma

If f is a newform, then p
f

(X ) := r
f

(X/i) 2 R[X ] satisfies:

p
f

(X ) = ±ik
⇣p

NX
⌘
k�2

· p
f

✓
1

NX

◆
.

Proof.

If W
N

:=
�

0 �1
N 0

�
, then Atkin-Lehner implies

f |W
N

= ±f .

Since W 2
N

= I in PSL2(R)+, we get

r
f

|(1±W
N

) = 0.
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Proving RHPP

General Strategy

1 Let m := k�2
2 , and define

P
f

(X ) :=
1

2

✓
2m
m

◆
⇤

✓
f ,

k

2

◆
+

mX

j=1

✓
2m

m + j

◆
⇤

✓
f ,

k

2
+ j

◆
X j .

2 Theorem 4 follows if the unit circle has all of the zeros of

T
f

(X ) := P
f

(X ) + ✏(f )P
f

(1/X ).

3 Letting X ! z = e i✓ on |z | = 1, then T
f

(z) is a
“trigonometric” polynomial in sin or cos depending ✏(f ).
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Proving RHPP

Classical Theorem of Pólya and Szegö

Theorem (Szegö, 1936)

Suppose that u(✓) and v(✓) are

u(✓) := a0 + a1 cos(✓) + a2 cos(2✓) + · · ·+ a
n

cos(n✓),

v(✓) := a1 sin(✓) + a2 sin(2✓) + · · ·+ a
n

sin(n✓).

If 0  a0  a1  a2 · · ·  a
n�1 < a

n

, then both u and v have
exactly n zeros in [0,⇡), and these zeros are simple.
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Proving RHPP

Useful inequalities

Lemma 1

The completed L-function ⇤(f , s) satisfies the following:

1) It is monotone increasing in the range s � k

2 + 1
2 .

2) In particular, we have

0  ⇤

✓
f ,

k

2

◆
 ⇤

✓
f ,

k

2
+ 1

◆
 ⇤

✓
f ,

k

2
+ 2

◆
 . . . .

3) If ✏(f ) = �1, then ⇤
�
f , k2

�
= 0 and

⇤

✓
f ,

k

2
+ 1

◆
 1

2
⇤

✓
f ,

k

2
+ 2

◆
 1

3
⇤

✓
f ,

k

2
+ 3

◆
 . . . .
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Method of Proof.

Use the Hadamard Factorization of ⇤(f , s) to prove various
useful inequalities.

Study large and small weight cases by slightly separate
arguments.

Check remaining cases using SAGE.
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Executive Summary

Our results

Theorem (Ono-R-Sprung)

Manin’s Conjecture is true.

1 For each newform f there is a zeta-polynomial Z
f

(s) which
has a FE and obeys RH.

2 The Z
f

(�n) encode the “Bloch-Kato complex.”

3 For fixed k and ✏(f ) = ✏, we have

lim
N!+1

Z
f

(s) = H✏
k

(�s).
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Executive Summary

This makes use of the following new result.

Theorem 4 (Jin-Ma-Ono-Soundararajan)

The Riemann Hypothesis for period polynomials is true.
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