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1. Determinants

In the last lecture, we saw some applications of invertible matrices. We would now
like to describe how to detect whether a matrix is invertible. Last time, we proved that
if a matrix is invertible, then its RREF is In. In the first tutorial, we showed that if
ad − bc 6= 0, then the matrix ( a bc d ) reduces to I2 and is hence invertible. Following the
steps of that proof, it isn’t hard to see that in fact this is an if and only if statement.

It will turn out for every square matrix of any size that there is a number associated
to it, called the determinant, which vanishes if and only if the matrix isn’t invertible.
In the case of 2×2 matrices, this happens to be the number ad−bc. For general n, there
is a unique function detA of matrices of size n × n satisfying a few simple properties.
We will first think of the determinant as a function of n variables, det(r1, . . . , rn), where
ri is the i-th row of A, thought of as a vector. The characterizing properties of det are
the following:

(1) det is a multilinear function.
(2) det is alternating, which means that if any two rows of A are equal, say ri = rj,

then the determinant is 0.
(3) The value of det on In is 1.

Here is a simple consequence of the above properties: if we swap two rows in A, say
rows i and j, then we have, by the alternating property and by multilinearity,

0 = det(r1, . . . , ri + rj, . . . , ri + rj, . . . , rn)

= det(r1, . . . , ri, . . . , ri, . . . , rn) + det(r1, . . . , ri, . . . , rj, . . . , rn)

+ det(r1, . . . , rj, . . . , ri, . . . , rn) + det(r1, . . . , rj, . . . , rj, . . . , rn)

= det(r1, . . . , ri, . . . , rj, . . . , rn) + det(r1, . . . , rj, . . . , ri, . . . , rn),

so that swapping two rows of a matrix multiplies the determinant by −1.
Moreover, if we add a multiple c of row j to row i, we find, again using multilinearity
and the alternating property, that

det(r1, . . . , ri + crj, . . . , rj, . . . , rn)

= det(r1, . . . , ri, . . . , rj, . . . , rn) + c det(r1, . . . , rj, . . . , rj, . . . , rn)

= det(r1, . . . , ri, . . . , rj, . . . , rn),
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so that adding a multiple of one row to another leaves a determinant un-
changed. Finally, if we multiply a row by a constant, then multilinearity again shows
that the determinant is multiplied by the same constant.

Example. We use the properties above to find that (with e1 = (1, 0) and e2 = (0, 1))

det

(
a b
c d

)
= det((a, b), (c, d)) = det(ae1 + be2, ce1 + de2)

ac det(e1, e1) + ad det(e1, e2) + bc det(e2, e1) + bd det(e2, e2)

= ad det(e1, e2)− bc det(e1, e2) = ad det I2 − bc det I2 = ad− bc.

Example. We compute (with e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1))

det

1 2 3
1 0 2
0 1 0

 = det(e1 + 2e2 + 3e3, e1 + 2e3, e2)

= det(e1, e1 + 2e3, e2) + 2 det(e2, e1 + 2e3, e2) + 3 det(e3, e1 + 2e3, e2)

= det(e1, e1, e2) + 2 det(e1, e3, e2) + 2 det(e2, e1, e2) + 4 det(e2, e3, e2) + 3 det(e3, e1, e2) + 6 det(e3, e3, e2)

= 2 det(e1, e3, e2) + 3 det(e3, e1, e2) = −2 det(e1, e2, e3) + 3 det(e1, e2, e3) = −2 det I3 + 3 det I3 = 1.

After doing a few such numerical examples, you discover that there are some pat-
terns which seem to emerge. We will explain this by giving another definition of the
determinant. Firstly, however, we need to describe a new mathematical object.

2. Permutations

A permutation of a set with n elements is simply a rearrangement of the elements.
We will usually describe these by taking as a set of size n the set of the first n natural
numbers 1, 2, . . . , n. For example, we may rearrange the numbers 1, 2, 3 according to a
permutation π, giving 3, 1, 2. One convenient way of keeping track of this action is to
use the two row notation:

π =

(
1 2 3
3 1 2

)
.

In this notation, the numbers in the second row are the results of applying the permu-
tation to the elements of the first row. There is one very special type of permutation we
shall need, called a transpostion. We will denote by (ij) the permutation which only
switches i and j and leaves all other elements unchanged. Note that we must know by
context what n is, since (ij) can denote a permutation of any number n of elements.
For example,

(23) =

(
1 2 3
1 3 2

)
.
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More generally, a k-cycle is a permutation (a1, a2, . . . , ak) which sends a1 to a2, a2 to
a3, . . . ak−1 to ak and finally ak to a1, and leaves all elements not listed fixed. For
example, we have

(152) =

(
1 2 3 4 5
5 1 3 4 2

)
.

We can define products of permutations by writing them next to one another and by
applying the actions of each working from right to left (the reason being that these are
really compositions of functions). This will give a new permutation.

Example. If we consider two permutations

π =

(
1 2 3 4 5
2 4 1 3 5

)
, σ =

(
1 2 3 4 5
5 4 3 2 1

)
,

then

πσ =

(
1 2 3 4 5
5 3 1 4 2

)
, σπ =

(
1 2 3 4 5
4 2 5 3 1

)
.

Note that multiplication of permutations is not commutative.

What we are interested in is decomposing permutations into cycles. This can be done
using the following simple procedure.

Algorithm. To write a permutation π as a product of disjoint cycles (i.e., a product of
cycles with no common elements between any two of them), pick the first number among
1, 2, . . . n which isn’t fixed (going to itself) by π. This is the first element of the first
cycle. To find the rest of the first cycle, keep applying π to successive elements until
you get back to the first element you started with, in which case you have “closed off”
the first cycle. Now repeat this process on the set of all remaining numbers from 1, . . . n
until every element is either fixed by π or is in one of the cycles you have already written
down.

Example. For the permutations in the last example, we have

π = (1243),

and

σ = (15)(24).

We also have

πσ = (1523),

and

σπ = (1435).

The key application of these cycle decompositions is the following result, whose proof
would require too much time for the application we have in mind in this class.
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Theorem. If π is is any permutation, then there is a certain unique number ±1, called
sign(π) or the sign of π, associated to π. If π can be written as a product of m transpo-
sitions (this in general isn’t unique, but the claim is that its true for any representation
as a product of transpositions that you find), then sign(π) = (−1)m.

We also say that π is even if sign(π) = +1 and that π is odd if sign(π) = −1. The
point is that every permutation can be written as a product of transpositions. This can
be found by first finding the cycle decomposition of the preceding algorithm and then
using the following elementary decomposition of any cycle into transpositions:

(a1, . . . ak) = (a1ak) · · · (a1a3)(a1a2).
This directly shows that any k cycle has sign (−1)k+1.

�

Note that the parity of an k-cycle as a permutation is opposite the parity of k as an
integer.

Thus, if we use the algorithm above, then the parity of any permutation which is a
product of cycles of lengths k1, . . . , k` can be read off as the product (−1)k1+1 · · · (−1)k`+1.

Example. Assuming the notation of the last example, we can use the cycle decomposi-
tions directly to read off the signs of all the permutations involved:

sign(π) = (−1)4+1 = −1,

and
sign(σ) = (−1)3(−1)3 = +1,

sign(πσ) = (−1)5 = −1,

and
sign(σπ) = (−1)5 = −1.

3. Leibniz form of the determinant

Using the reasoning in the above examples for determinants, we can write down a
general formula for determinants using permutations. As we extrapolate from the ex-
amples above, we can see that if we want to use the defining properties of a determinant
to compute it, we first write each row vector in terms of the standard basis vectors
e1, . . . , en, where ei is the i-th row of In, and then use multilinearity to expand. We will
then get a sum of products of coordinates of the row vectors, namely matrix entries,
with one term in each product coming from each row, times values of determinants on
some ordering of the ei’s. Now, by the alternating property, whenever one of these ej
functions appears twice, we will get a zero in that term. Otherwise, we are exactly in
the case that the entries in the corresponding term are just a permutation of e1, . . . , en.
Finally, using the property that switching two rows just multiplies the determinant by a
factor of −1, we take each of these remaining terms and perform a series of transpositions
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(swapping two entries), to reduce it to the sign of the corresponding permutation times
the determinant of In, which is of course 1. All of this is summarized in the following
result, where if x = 1, . . . , n and π is a permutation, then π(x) is the result of applying
π to x.

Theorem. The determinant function defined by the properties above can be computed
for any matrix A as

detA =
∑
π

sign(π)A1π(1)A2π(2) · · ·Anπ(n),

where in the sum, π runs over all permutations of 1, 2, . . . n.
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