# MATRIX OPERATIONS: MATRIX ADDITION, SCALAR MULTIPLICATION, AND MATRIX MULTIPLICATION

#### MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

In this lecture, we will discuss how to build new matrices from old ones.

### 1. Addition of matrices

The first, and simplest operation, is that of addition. To aid our description, we will find a bit of notation helpful. We will say that a matrix is an  $m \times n$  matrix if it has m rows and n columns. For example, the matrix

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 5 & 0 & -2 \end{pmatrix}$$

is a  $2 \times 3$  matrix. We will also use the subscripts i, j to denote the entry in the *i*-th row and *j*-th column of a matrix as  $A_{ij}$ ; for example, if A is as above, then

$$A_{23} = -2.$$

**Definition.** Given two matrices A and B of the same dimensions  $m \times n$ , their sum A + B is the  $m \times n$  matrix whose entries are given by the equation

$$(A+B)_{ij} = A_{ij} + B_{ij}.$$

In other words, we simply add each of the corresponding components of the two matrices.

# Example. If

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 5 & 0 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 4 & -1 \\ 0 & 1 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 3 & 7 \\ 5 & 0 & -2 \\ 1 & 2 & 8 \end{pmatrix},$$

then

$$A + B = \begin{pmatrix} 1+2 & 3+4 & 7-1\\ 5+0 & 0+1 & -2+3 \end{pmatrix} = \begin{pmatrix} 3 & 7 & 6\\ 5 & 1 & 1 \end{pmatrix},$$

while A + C is not defined, as A is a 2 × 3 matrix, while C is a 3 × 3 matrix.

**Example.** Given two vectors, if we think of them as  $n \times 1$  matrices, instead of tuples of numbers as originally, then matrix addition of the two vectors coincides with our first definition of vector addition.

Date: October 11, 2016.

**Example.** If A is any  $m \times n$  matrix, and if 0 denotes the  $m \times n$  matrix with all entries equal to zero, then A + 0 = 0. We call this the **zero matrix** (in dimensions  $m \times n$ ). Clearly, matrix addition is always commutative (A + B = B + A) and associative (A + (B + C) = (A + B) + C), as addition of real numbers satisfies both of these properties.

## 2. Scalar Multiplication

Just as we defined for vectors, we can multiply a matrix by a real number, which simply multiplies each component by that same number. That is, if  $c \in \mathbb{R}$  and A is an  $m \times n$  matrix, then cA is also an  $m \times n$  matrix, defined by

$$(cA)_{ij} = c(A_{ij}).$$

Example. If

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 5 & 0 & -2 \end{pmatrix},$$

then

$$2A = \begin{pmatrix} 2 & 6 & 14 \\ 10 & 0 & -4 \end{pmatrix}.$$

## 3. MATRIX PRODUCTS

We now come to our second matrix operation, which is slightly more subtle.

**Definition.** Given an  $m \times n$  matrix A and an  $n \times \ell$  matrix B, the product AB is an  $m \times \ell$  matrix defined by

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

That is, the i, j-th entry of AB is the dot product of the i-th row of A and the j-th column of B.



If the number of columns of A doesn't equal the number of rows of B, then the matrix product AB will not be defined. In this situation, when we would try to take the dot product of a row of the first matrix with a column of the second matrix, we would get a dot product between two vectors of different dimensions, which isn't defined as we have seen.

Example. If

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 5 & 0 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 & 1 & -1 \\ 4 & 1 & 1 & 5 \\ 3 & 4 & -7 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 0 & 1 & -1 \\ 4 & 1 & 1 & 5 \end{pmatrix}$$

then A is a  $2 \times 3$  matrix, B is a  $3 \times 4$  matrix, and C is a  $2 \times 4$  matrix. Thus, AB is the  $2 \times 4$  matrix given by

$$AB = \begin{pmatrix} 1 \cdot 2 + 3 \cdot 4 + 7 \cdot 3 & 1 \cdot 0 + 3 \cdot 1 + 7 \cdot 4 & 1 \cdot 1 + 3 \cdot 1 + 7 \cdot (-7) & 1 \cdot (-1) + 3 \cdot 5 + 7 \cdot 0 \\ 5 \cdot 2 + 0 \cdot 4 - 2 \cdot 3 & 5 \cdot 0 + 0 \cdot 1 - 2 \cdot 4 & 5 \cdot 1 + 0 \cdot 1 - 2 \cdot (-7) & 5 \cdot (-1) + 0 \cdot 5 - 2 \cdot 0 \end{pmatrix}$$
$$= \begin{pmatrix} 35 & 31 & -45 & 14 \\ 4 & -8 & 19 & -5 \end{pmatrix}$$

and AC, BA, BC, CA, and CB are all undefined.

**Example.** Solving the system of linear equations in the variables  $x_1, \ldots, x_n$  corresponding to the augmented matrix

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix} .$$

is the same as solving the matrix equation Ax = b for an unknown vector x, where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Example. If

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix},$$

then

$$AB = \begin{pmatrix} 1 \cdot 1 + 1 \cdot (-1) & 1 \cdot 1 + 1 \cdot (-1) \\ 2 \cdot 1 + 2 \cdot (-1) & 2 \cdot 1 + 2 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

This shows that the **product of two non-zero matrices can give the zero matrix.** This is a property that is a little unusual, as for example, multiplication of real numbers doesn't have this property.

As A and B are square matrices of the same size, we can also consider the product BA, which we compute to be

$$BA = \begin{pmatrix} 3 & 3 \\ -3 & -3 \end{pmatrix}.$$

Thus, matrix multiplication isn't commutative; that is, we don't always have AB = BA.

**Example.** In addition to the zero matrix, which we saw above plays a distinguished role in matrix addition, we have the important **identity matrix**  $I_n$ , which is the square  $n \times n$  matrix with ones along the **diagonal** and zeros elsewhere:

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

The reason we call this the identity matrix is that if A is any  $m \times n$  matrix, then

$$I_m A = A$$

and

$$AI_n = A.$$

In other words, multiplying on either side by  $I_n$  leaves a matrix unchanged whenever the multiplication is defined. To see this, consider the first equation,  $I_mA = A$ . By definition, this is an  $m \times n$  matrix, and the *i*, *j*-th entry is

$$(I_m A)_{ij} = 0 + \dots + 1 \cdot A_{ij} + \dots + 0 = A_{ij},$$

as the *i*-th row of  $I_m$  is  $(0 \cdots 0 \mid 0 \cdots 0)$ , where the 1 is in the *i*-th entry.

**Example.** The matrix product has two further simple properties which we will frequently use. These are associativity:

$$A(BC) = (AB)C,$$

and the distributive property over matrix addition:

$$A(B+C) = AB + AC.$$

That is, these two identity hold whenever the products on both sides are defined. To check associativity, assume that A is an  $m \times n$  matrix, B is an  $n \times \ell$  matrix, and C is an  $\ell \times r$  matrix. Then the *i*, *j*-th entry of the left hand side of the above is

$$[A(BC)]_{ij} = \sum_{k=1}^{n} A_{ik}(BC)_{kj} = \sum_{k=1}^{n} \sum_{q=1}^{\ell} A_{ik} B_{kq} C_{qj}$$

and similarly computing the right hand side, we find

$$[(AB)C]_{ij} = \sum_{q=1}^{\ell} (AB)_{iq} C_{qj} = \sum_{q=1}^{\ell} \sum_{k=1}^{n} A_{ik} B_{kq} C_{qj} = [A(BC)]_{ij}.$$

The distributive property follows by a similar type of proof.