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In this lecture, we will discuss how to build new matrices from old ones.

1. Addition of matrices

The first, and simplest operation, is that of addition. To aid our description, we will
find a bit of notation helpful. We will say that a matrix is an m×n matrix if it has m
rows and n columns. For example, the matrix

A =

(
1 3 7
5 0 −2

)
is a 2× 3 matrix. We will also use the subscripts i, j to denote the entry in the i-th row
and j-th column of a matrix as Aij; for example, if A is as above, then

A23 = −2.

Definition. Given two matrices A and B of the same dimensions m× n, their sum
A + B is the m× n matrix whose entries are given by the equation

(A + B)ij = Aij + Bij.

In other words, we simply add each of the corresponding components of the two
matrices.

Example. If

A =

(
1 3 7
5 0 −2

)
, B =

(
2 4 −1
0 1 3

)
, C =

1 3 7
5 0 −2
1 2 8

 ,

then

A + B =

(
1 + 2 3 + 4 7− 1
5 + 0 0 + 1 −2 + 3

)
=

(
3 7 6
5 1 1

)
,

while A + C is not defined, as A is a 2× 3 matrix, while C is a 3× 3 matrix.

Example. Given two vectors, if we think of them as n × 1 matrices, instead of tuples
of numbers as originally, then matrix addition of the two vectors coincides with our first
definition of vector addition.
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Example. If A is any m×n matrix, and if 0 denotes the m×n matrix with all entries
equal to zero, then A + 0 = 0. We call this the zero matrix (in dimensions m × n).
Clearly, matrix addition is always commutative (A + B = B + A) and associative (A +
(B + C) = (A + B) + C), as addition of real numbers satisfies both of these properties.

2. Scalar Multiplication

Just as we defined for vectors, we can multiply a matrix by a real number, which
simply multiplies each component by that same number. That is, if c ∈ R and A is an
m× n matrix, then cA is also an m× n matrix, defined by

(cA)ij = c(Aij).

Example. If

A =

(
1 3 7
5 0 −2

)
,

then

2A =

(
2 6 14
10 0 −4

)
.

3. Matrix Products

We now come to our second matrix operation, which is slightly more subtle.

Definition. Given an m × n matrix A and an n × ` matrix B, the product AB is an
m× ` matrix defined by

(AB)ij =
n∑

k=1

AikBkj.

That is, the i, j-th entry of AB is the dot product of the i-th row of A and the j-th
column of B.

�

If the number of columns of A doesn’t equal the number of rows of B, then the matrix
product AB will not be defined. In this situation, when we would try to take the dot
product of a row of the first matrix with a column of the second matrix, we would get a
dot product between two vectors of different dimensions, which isn’t defined as we have
seen.

Example. If

A =

(
1 3 7
5 0 −2

)
, B =

2 0 1 −1
4 1 1 5
3 4 −7 0

 , C =

(
2 0 1 −1
4 1 1 5,

)
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then A is a 2 × 3 matrix, B is a 3 × 4 matrix, and C is a 2 × 4 matrix. Thus, AB is
the 2× 4 matrix given by

AB =

(
1 · 2 + 3 · 4 + 7 · 3 1 · 0 + 3 · 1 + 7 · 4 1 · 1 + 3 · 1 + 7 · (−7) 1 · (−1) + 3 · 5 + 7 · 0
5 · 2 + 0 · 4− 2 · 3 5 · 0 + 0 · 1− 2 · 4 5 · 1 + 0 · 1− 2 · (−7) 5 · (−1) + 0 · 5− 2 · 0

)
=

(
35 31 −45 14
4 −8 19 −5

) ,

and AC, BA, BC, CA, and CB are all undefined.

Example. Solving the system of linear equations in the variables x1, . . . , xn correspond-
ing to the augmented matrix

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm

 .

is the same as solving the matrix equation Ax = b for an unknown vector x, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 ,

x =


x1

x2
...
xn

 , b =


b1
b2
...
bm

 .

Example. If

A =

(
1 1
2 2

)
, B =

(
1 1
−1 −1

)
,

then

AB =

(
1 · 1 + 1 · (−1) 1 · 1 + 1 · (−1)
2 · 1 + 2 · (−1) 2 · 1 + 2 · (−1)

)
=

(
0 0
0 0

)
= 0.

This shows that the product of two non-zero matrices can give the zero matrix.
This is a property that is a little unusual, as for example, multiplication of real numbers
doesn’t have this property.

As A and B are square matrices of the same size, we can also consider the product
BA, which we compute to be

BA =

(
3 3
−3 −3

)
.

Thus, matrix multiplication isn’t commutative; that is, we don’t always have AB =
BA.
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Example. In addition to the zero matrix, which we saw above plays a distinguished role
in matrix addition, we have the important identity matrix In, which is the square n×n
matrix with ones along the diagonal and zeros elsewhere:

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

The reason we call this the identity matrix is that if A is any m× n matrix, then

ImA = A

and
AIn = A.

In other words, multiplying on either side by In leaves a matrix unchanged whenever
the multiplication is defined. To see this, consider the first equation, ImA = A. By
definition, this is an m× n matrix, and the i, j-th entry is

(ImA)ij = 0 + · · ·+ 1 · Aij + · · ·+ 0 = Aij,

as the i-th row of Im is ( 0 ··· 0 1 0 ··· 0 ) , where the 1 is in the i-th entry.

Example. The matrix product has two further simple properties which we will frequently
use. These are associativity:

A(BC) = (AB)C,

and the distributive property over matrix addition:

A(B + C) = AB + AC.

That is, these two identity hold whenever the products on both sides are defined. To
check associativity, assume that A is an m× n matrix, B is an n× ` matrix, and C is
an `× r matrix. Then the i, j-th entry of the left hand side of the above is

[A(BC)]ij =
n∑

k=1

Aik(BC)kj =
n∑

k=1

∑̀
q=1

AikBkqCqj,

and similarly computing the right hand side, we find

[(AB)C]ij =
∑̀
q=1

(AB)iqCqj =
∑̀
q=1

n∑
k=1

AikBkqCqj = [A(BC)]ij.

The distributive property follows by a similar type of proof.
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