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1. Laplace expansions

By using the cofactors from the last lecture, we can find a very convenient way to
compute determinants. We first give the method, then try several examples, and then
discuss its proof.

Algorithm (Laplace expansion). To compute the determinant of a square matrix, do
the following.

(1) Choose any row or column of A.
(2) For each element Aij of this row or column, compute the associated cofactor Cij.
(3) Multiply each cofactor by the associated matrix entry Aij.
(4) The sum of these products is detA.

Example. We find the determinant of

A =

 2 1 3
−1 2 1
−2 2 3

 .

We make the arbitrary choice to expand along the first row. We compute the minors as

M11 = det

(
2 1
2 3

)
, M12 = det

(
−1 1
−2 3

)
, M13 = det

(
−1 2
−2 2

)
.

Computing these 2× 2 determinants, we have

M11 = 4, M12 = −1, M13 = 2.

By inserting signs, we find that the cofactors are

C11 = M11 = 4, C12 = −M12 = 1, C13 = M13 = 2.

Thus,

detA = A11C
11 + A12C

12 + A13C
13 = 2(4) + (1) + 3(2) = 15.

Date: October 19, 2016.
1



2 MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

With this method, much larger determinants are also feasible, especially when there
are lots of zeros in a row or column. Generally speaking, it is a good idea when computing
an example to try to expand along a row or column with as many zeros as possible, or
at least with the smallest entries possible.

Example. We find the determinant of

A =


2 5 −3 −2
−2 −3 2 −5
1 3 −2 0
−1 6 4 0

 .

We expand along the last column to find

detA = 2 det

−2 −3 2
1 3 −2
−1 6 4

− 5 det

 2 5 −3
1 3 −2
−1 6 4


We can find these two determinants by expanding them as well. For example, expanding
along the first column on the first one, we find that

det

−2 −3 2
1 3 −2
−1 6 4

 = −2 det

(
3 −2
6 4

)
− det

(
−3 2
6 4

)
− det

(
−3 2
3 −2

)
= −2(24)− (−24)− 0 = −48 + 24 + 0 = −24.

Similarly, by expanding the second 3× 3 matrix along the first column, we find that 2 5 −3
1 3 −2
−1 6 4

 = 2 det

(
3 −2
6 4

)
− det

(
5 −3
6 4

)
− det

(
5 −3
3 −2

)
= 2(24)− (38)− (−1) = 11.

Thus, we find that

detA = 2(−24)− 5(11) = −103.

Discussion of the proof of the algorithm. Since we know that switching two rows negates
determinants (and negates the sings in the cofactors as well), and since transposes pre-
serve determinants (meaning that we can switch the roles of rows and columns in de-
terminant calculations), it is enough to show this when we pick the first row in the
algorithm. By our definition, it is enough to show that this satisfies the 3 properties
uniquely characterizing determinants. That is, if we define f(A) = A11C

11+. . .+A1nC
1n,

then we just have to show that f is multilinear in the rows of A, that it is alternating in
the rows, and that f(In) = 1. The proof of multilinearity, and of the alternating prop-
erty, follow from careful writing down of the objects involved, but you can also try an
example and are encouraged to think through why you should believe this! For example,
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you are strongly encouraged to just try out these two properties on an arbitrary, say
3× 3, matrix. �

2. Adjugate matrices and inverses

In addition to finding determinants quickly, we can use cofactors to quickly compute
inverses of matrices. If we stick all the cofactors into a matrix, then we obtain the
cofactor matrix. That is, the cofactor matrix is the matrix C such that

Cij = Cij.

The adjugate matrix (sometimes called the adjoint matrix), denoted adj(A), is simply
the transpose of the cofactor matrix:

(adjA)ij = Cji.

The reason this matrix is interesting is that the following result holds.

Theorem. For any n× n matrix A, we have

A · adj(A) = det(A)In.

In particular, if A is invertible, then A−1 = (detA)−1adj(A).

Proof. This is essentially a restatement of the Laplace expansion algorithm above. To
check it, compute the i, j-th entry of the left hand side:

(A · adjA)ij =
n∑

k=1

Aik(adjA)kj =
n∑

k=1

aikC
jk.

If i = j, then by Laplace expansion, we get detA. If i 6= j, then by Laplace expansion
again, we are really computing the determinant of the matrix where we replace the j-th
row of A by its i-th row. But such a matrix has two rows which are the same, and hence
has determinant zero. �

Example. We continue working with the matrix

A =

 2 1 3
−1 2 1
−2 2 3


from above. We already found the first few cofactors to be

C11 = M11 = 4, C12 = −M12 = 1, C13 = M13 = 2.

Continuing in the same manner as above, we find that the matrix of cofactors is 4 1 2
3 12 −6
−5 −5 5

 .
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Taking the transpose of this matrix yields that

adj(A) =

4 3 −5
1 12 −5
2 −6 5

 .

Since we saw above that detA = 15, we find that

A−1 =

 4
15

1
5
−1

3
1
15

4
5
−1

3
2
15
−2

5
1
3

 .

3. Cramer’s Rule

Suppose that A is invertible. Then we already know that Ax = b has only one solution
for any b. Of course, this solution is the vector x = A−1b. Plugging in the adjugate
yields that

xj = (detA)−1(adjA)b = (detA)−1

n∑
k=1

Ckjbk.

But the sum is just a j-th column expansion of the matrix Aj obtained by replacing the
j-th column with b. This gives Cramer’s fomula.

Theorem (Cramer’s rule). Assume the notation above. If A is invertible, then the
solution to Ax = b is given by

xj =
det(Aj)

detA
.

Example. We saw above that

A =

 2 1 3
−1 2 1
−2 2 3


is invertible, with detA = 15. Thus, by Cramer’s rule, the solution to Ax =

 1
−2
0

 is

given by

x1 =
1

15
det

 1 1 3
−2 2 1
0 2 3

 = − 2

15
,

x2 =
1

15
det

 2 1 3
−1 −2 1
−2 0 3

 = −23

15
,
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x3 =
1

15
det

 2 1 1
−1 2 −2
−2 2 0

 =
14

15
.


	1. Laplace expansions
	2. Adjugate matrices and inverses
	3. Cramer's Rule

