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L–functions for Harmonic Maass Forms

Modular forms

Functions on H := {τ ∈ C : Im(τ) > 0}.

Slash action: f |kγ(τ) := (cτ + d)−k f ((aτ + b)/(cτ + d)).

Modularity:
1 f |kγ = f ∀γ ∈ Γ ≤ SL2(Z).
2 + growth conditions (classical: holomoprhic at “cusps”)
3 + analytic conditions (classical: holomoprhic)

New Quanta article: https://tinyurl.com/vv8mcjuw

“Algebra” of adjectives: weakly, quasi, meromorphic, almost...

https://tinyurl.com/vv8mcjuw
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L-functions for classical modular forms

Cusp form f (τ) :=
∑

n≥1 an(f )qn ∈ Sk(N) Dirichlet series

Lf (s) :=
∑
n≥1

af (n)n−s , (Re(s)� 0).

Completion: Λf (s) := Ns/2(2π)−2sΓ(s)Lf (s).

This analytically continues to C with functional equation:

Λf (s) = ±Λf (k − s).

If f ∈ Mk(N) (e.g., Eisenstein series), subtract constant term.
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Forms with exponential growth

In combinatorics, physics, enumerative geometry, often
encounter functions with exp. growth at the cusps.

Weakly holomorphic modular forms (M !
k(N)): Like Mk(N),

but may have a “pole” at the cusps.

Harmonic Maass forms (Hk(N)): like WHMFs, but in kernel
of “Laplacian” instead of holomorphic. Splitting:∑

n�−∞ c+f (n)qn +
∑

n<0 c
−
f (n)Γ(1− k ,−4πnv)qn, where

Γ(s, z) :=
∫ i∞
z e−tts−1dt.

HMFs have “shadows.” The map ξ2−k : H2−k → Sk given by
2i Im(τ)k∂/∂τ is surjective. Finding preimages related to big
problems: Lehmer’s Conjecture, ranks of elliptic curves...

Brown’s modular iterated integrals: repeated primitives of
WHMFs under ∂τ , ∂τ .
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L-functions for forms with exp. growth?

For WHMFs, HMFs, etc., the poles at the cusp give
(sub)-exponential growth of Fourier coefficients.

Bringmann-Fricke-Kent (f ∈ M !
k): For t0 > 0, define

Lf (s) :=
∑

n�−∞
n 6=0

af (n)Γ(s, 2πnt0)

(2πn)s
+ik

∑
n�−∞
n 6=0

af (n)Γ
(
k − s, 2πnt0

)
(2πn)k−s

.

They used this to further “explain” generalizations of
Eichler-Shimura period polynomial theory to HMF theory.

No construction was known for other HMFs with exp. growth.

This is “symmetrized” so functional equation is “baked in.”
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Workaround: Use test functions

Diamantis-Lee-Raji-R. (f ∈ Hk): Using the Laplace transform
(Lϕ)(u) :=

∫∞
0 e−utϕ(t)dt, set

Lf (ϕ) :=
∑

n≥−n0

c+f (n)(Lϕ)(2πn)

+
∑
n<0

c−f (n)(−4πn)1−k
∫ ∞
0

(Lϕ2−k)(−2πn(2t + 1))

(1 + t)k
dt.

Recovering previous:

Lf (s) =

{
Lf ((2π)sx s−1/Γ(s)) if f (τ) ∈ Sk ,

Lf (χx≥t0(2π)sx s−1/Γ(s)) if f (τ) ∈ M !
k .
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Analogues of classical results

Theorem (Converse Theorem, D-L-R-R, 2023)

Suppose f has a Fourier expansion of the shape above.

Set
f ′(τ) := τ ∂f∂u + k

2 f (τ). Then explicit functional equations sending

ϕ(x) 7→ ϕ(x)|2−kWN under the Fricke involution
(

0
√
M

−1

√
M 0

)
, for

a finite set of Dirichlet character twisted L-functions of f and f ′,
imply that f ∈ Hk(Γ).

Theorem (Summation Formula, D-L-R-R, 2023)

If F ∈ Sk with shadow g, then for “good” test functions ϕ,∑
n�−∞

c+F (n)I(ϕ) =
∑
n>0

ag (n)J (ϕ).

Here I and J are explicit integral transforms.
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Applications

This gives a way to sidestep “regularization” procedures.

Gives a method to produce operators between HMF spaces.

For instance, the Shimura lift was first discovered by using
Converse Theroem+Rankin-Selberg.

The summation formula strongly couples “classical” MF
coefficients to “mysterious” mock coefficients.
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Further directions

This gives new structure to explore. It works in other cases;
October 2023: Drewitt-Pimm did for Brown’s functions.

What about eigenforms? Guerzhoy gave WHMF eigenforms.

For these, Diamantis-Drewitt proved a Manin period
theorem-style algebraicity result for critical L-values of certain
weakly holomorphic modular forms.

Brown has further conjectures of “motivicness.”
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Example of producing modular operators using
Converse Theorem

In integral weight, the shadow has a “friend”: Dk−1 the
(k − 1)-fold τ derivative.

Key intertwining: Dk−1(f |2−kγ) = (Dk−1f )|kγ.

By Converse and direct theorems, modualrity-preserving
property of Dk−1 is equivalent to an identity on test functions

α(ϕ)|2−kWN = −α(ϕ|kWN); α(ϕ) := L−1(uk−1(Lϕ)(u))

Using special function identities, this boils down to relation for
the modified J-Bessel function:

J−k(x) = (−1)kJk(x).
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Key intertwining: Dk−1(f |2−kγ) = (Dk−1f )|kγ.

By Converse and direct theorems, modualrity-preserving
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Half-integral weight?

k Bessel function relation

Z J−k(x) = (−1)kJk(x)

1
2 + Z Jk(x) =

√
2
πx

(
Pk( 1

x ) sin x − Qk( 1
x ) cos x

)
,

J−k(x) = (−1)k−
1
2

√
2
πx

(
Pk( 1

x ) cos x + Qk( 1
x ) sin x

)
,

for polynomials Pk(x),Qk(x)

R \ 1
2Z No simple relation.

Branch-Diamantis-Raji-R., 2023: Construct a cohomology
class with coefficients in a finite-dimensional vector space for
half-integral weight cusp forms.
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Special L-values

Before the L-functions, Zagier conjectured that
J(τ) := j(τ)− 744 has “central L-value

“LJ(0)” = −2 Re

(∫ i+1

i
J(τ)ψ(τ)dτ

)
,

where ψ(s) := Γ′(s)/Γ(s) is the Euler digamma function.

Bruinier, Funke, and Imamoğlu gave a geometric proof.

As they point out, this is very similar to formulas for critical
L-values of modular forms expressed as cohomological periods
of forms over “spectacle cycles.”

Diamantis-Rolen 2022: Full framework for such formulas,
using our general L-function technology (Hurwitz+Lerch ζ...)
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THANK YOU!!!


