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e Functions on H := {7 € C : Im(7) > 0}.

Slash action: f|,y(7) := (e + d)~*f((ar + b)/(cT + d)).

Modularity:

Q flyy=1F VYyeTl <SLy(Z).
@ + growth conditions (classical: holomoprhic at “cusps”)
© + analytic conditions (classical: holomoprhic)

New Quanta article: https://tinyurl.com/vv8mcjuw

“Algebra” of adjectives: weakly, quasi, meromorphic, almost...
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L-functions for classical modular forms

Cusp form f(7) := >, an(f)q" € Sk(N) ~ Dirichlet series

Le(s) = ar(n)n™°, (Re(s) > 0).

n>1

Completion: A¢(s) := N5/2(21)=25T(s)L¢(s).

This analytically continues to C with functional equation:

/\f(S) = :i:/\f(k — S).

If f € Mi(N) (e.g., Eisenstein series), subtract constant term.
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Forms with exponential growth

@ In combinatorics, physics, enumerative geometry, often

encounter functions with exp. growth at the cusps.

Weakly holomorphic modular forms (M, (N)): Like My(N),
but may have a “pole” at the cusps.

Harmonic Maass forms (Hi(N)): like WHMFs, but in kernel
of “Laplacian” instead of holomorphic. Splitting:

Zn»_oo c;r(n)q” + > heo S (MI(1— k, —4mnv)q", where
[(s,z):= [}7 e ttsLdt.

HMFs have “shadows.” The map &_k: Ho_j — Sk given by
2i Im(7)k0/07 is surjective. Finding preimages related to big
problems: Lehmer’s Conjecture, ranks of elliptic curves...

Brown’s modular iterated integrals: repeated primitives of
WHMFs under 0,, 0-.
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L-functions for forms with exp. growth?

@ For WHMFs, HMFs, etc., the poles at the cusp give
(sub)-exponential growth of Fourier coefficients.

o Bringmann-Fricke-Kent (f € M,): For ty > 0, define

Le(s) = > ar(n )(2(;n27rnto Lk Z

n>=>>—o0o n>—oo
n#0 n#0

@ They used this to further “explain” generalizations of
Eichler-Shimura period polynomial theory to HMF theory.

@ No construction was known for other HMFs with exp. growth.

@ This is “symmetrized” so functional equation is “baked in.”
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Workaround: Use test functions

e Diamantis-Lee-Raji-R. (f € Hy): Using the Laplace transform
(Lo)(u) = [y~ e “p(t)dt, set

Le(p) = Y f (n)(Ly)(2mn)

n>—ngp

® (Lpa—k)(—2mn(2t + 1))
+ ; c; (n)(—4mn)! /0 (17 o)k dt.

@ Recovering previous:

Li(s) = Le((27)5x5~1 /T (5)) if £(r) € Si,
f L(xxst(27)5x571/T(s)) i F(r) € M.
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Analogues of classical results

Theorem (Converse Theorem, D-L-R-R, 2023)

Suppose f has a Fourier expansion of the shape above. Set

f'(r) = T% + gf (7). Then explicit functional equations sending
©(x) = @©(x)|2—xk Wn under the Fricke involution <\/% ‘/Mo_l), for

a finite set of Dirichlet character twisted L-functions of f and f/,
imply that f € H(I').

Theorem (Summation Formula, D-L-R-R, 2023)
If F € S with shadow g, then for “good” test functions (,

S M) =D ag(n)T(¢).

n=>>—oo n>0

Here 7 and [J are explicit integral transforms.
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Applications

@ This gives a way to sidestep “regularization” procedures.

o Gives a method to produce operators between HMF spaces.

@ For instance, the Shimura lift was first discovered by using
Converse Theroem+Rankin-Selberg.

The summation formula strongly couples “classical’” MF
coefficients to “mysterious” mock coefficients.
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Further directions

@ This gives new structure to explore. It works in other cases;
October 2023: Drewitt-Pimm did for Brown's functions.

@ What about eigenforms? Guerzhoy gave WHMF eigenforms.

@ For these, Diamantis-Drewitt proved a Manin period
theorem-style algebraicity result for critical L-values of certain
weakly holomorphic modular forms.

@ Brown has further conjectures of “motivicness.”
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Example of producing modular operators using
Converse Theorem

o In integral weight, the shadow has a “friend”: D¥~1 the
(k — 1)-fold T derivative.

o Key intertwining: D*(f|o_xy) = (D*71F)| .
@ By Converse and direct theorems, modualrity-preserving
property of D¥~1 is equivalent to an identity on test functions

a(Q)o—kWn = —a(pkWh):  alp) = L7 (u* 1 (Lp)(u))

@ Using special function identities, this boils down to relation for
the modified J-Bessel function:

J_i(x) = (=1)* Ui (x).
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Half-integral weight?

k Bessel function relation
Z T = (DR l)
I+z J(x) = \/% (Pk(%)sinx — Qk(%) cosx),
Joi(x) = (~1)72 /2 (Pi(L) cos x + Qu(L)sinx),

for polynomials Py(x), Qx(x)

R\ 3Z No simple relation.

@ Branch-Diamantis-Raji-R., 2023: Construct a cohomology
class with coefficients in a finite-dimensional vector space for
half-integral weight cusp forms.
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Special L-values

@ Before the L-functions, Zagier conjectured that
J(7) := j(7) — 744 has “central L-value

“L,(0)" = —2Re < / " J(T)W)dT) ,

where 1)(s) :=T"(s)/I'(s) is the Euler digamma function.
@ Bruinier, Funke, and Imamoglu gave a geometric proof.

@ As they point out, this is very similar to formulas for critical
L-values of modular forms expressed as cohomological periods
of forms over “spectacle cycles.”

@ Diamantis-Rolen 2022: Full framework for such formulas,
using our general L-function technology (Hurwitz+Lerch (...)
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