TUTORIAL 1, SOLUTIONS

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

i). In class, we mentioned that the cross product is not associative. That is, we don't always have $u \times(v \times w)=(u \times v) \times w$. Instead, the cross product satisfies an important identity known as the Jacobi identity:

$$
\begin{equation*}
u \times(v \times w)+v \times(w \times u)+w \times(u \times v)=0 \tag{1}
\end{equation*}
$$

Show, using the identity

$$
u \times(v \times w)=(u \cdot w) \cdot v-(u \cdot v) \cdot w
$$

which we showed in class, that (1) holds for any vectors $u, v, w \in \mathbb{R}^{3}$.

Solution:

We plug our identity into the left hand side of (11), yielding:

$$
\begin{aligned}
& u \times(v \times w)+v \times(w \times u)+w \times(u \times v) \\
& =(u \cdot w) \cdot v-(u \cdot v) \cdot w+(v \cdot u) \cdot w-(v \cdot w) \cdot u+(w \cdot v) \cdot u-(w \cdot u) \cdot v \\
& =0
\end{aligned}
$$

where in the last line we used the fact that $a \cdot b=b \cdot a$ for all vectors a, b.
ii). Prove that the diagonals of a square are orthogonal.

Solution: We may assume that the square has lower left vertex at the origin $A=(0,0)$, with its other three vertices at $B=(a, 0), C=(0, a)$, and $D=(a, a)$, where of course a is the side length of the square. The two diagonals are parallel to the vectors

$$
\overrightarrow{A D}=(a, a)
$$

and

$$
\overrightarrow{B C}=(-a, a)
$$

Thus, we just need to show that $\overrightarrow{A D}$ is orthogonal to $\overrightarrow{B C}$, which we have shown in class is equivalent to their dot product being zero. This is easily verified:

$$
\overrightarrow{A D} \cdot \overrightarrow{B C}=-a^{2}+a^{2}=0
$$

iii). Consider the three planes given by

$$
x+2 y+z=5, \quad 2 x+2 y+2 z=4, \quad x+z=-1 .
$$

Using row reduction, find the intersection between all three planes.

Solution: We represent the intersection as the set of solutions to the system of equations

$$
\left\{\begin{array}{l}
x+2 y+z=5 \\
2 x+2 y+2 z=4 \\
x+z=-1
\end{array}\right.
$$

which is represented by the augmented matrix

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 5 \\
2 & 2 & 2 & 4 \\
1 & 0 & 1 & -1
\end{array}\right)
$$

We row reduce as follows:

$$
\begin{aligned}
& \left(\begin{array}{lll|c}
1 & 2 & 1 & 5 \\
2 & 2 & 2 & 4 \\
1 & 0 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & 1 & 5 \\
0 & -2 & 0 & -6 \\
0 & -2 & 0 & -6
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & -1 \\
0 & -2 & 0 & -6 \\
0 & 0 & 0 & -0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll|c}
1 & 0 & 1 & -1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & -0
\end{array}\right) .
\end{aligned}
$$

Note that there are two pivotal variables (x, y) and one free one (z). We can then read off the solution set by letting $z=t$ for any $t \in \mathbb{R}$ and then

$$
\begin{gathered}
x+z=x+t=-1 \Longrightarrow x=-1-t, \\
y=3 .
\end{gathered}
$$

Thus, the three planes intersect in a line with parametric equations

$$
\left\{\begin{array}{l}
x=-1-t \\
y=3 \\
z=t
\end{array}\right.
$$

iv). Show that if $a d-b c \neq 0$, then the reduced row echelon form of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Solution: We have to consider two cases. If $a \neq 0$, then we row reduce as follows:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & \frac{b}{a} \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & d-\frac{b c}{a}
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right) .
$$

Now, as $a d-b c$ is not zero, we can divide by it and can continue reducing to

$$
\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Finally, if $a=0$, then since $a d-b c \neq 0$ we also have $c \neq 0$ and so we may reduce as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{ll}
c & d \\
0 & b
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ll}
1 & \frac{d}{c} \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Advanced Problem (optional):

For any three numbers x, y, z define the three vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
x^{2} \\
y^{2} \\
z^{2}
\end{array}\right)
$$

For which choices of x, y, z is the set of all linear combinations of the three vectors, $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)$, equal to all of \mathbb{R}^{3} ?

Solution: We put the vectors in a matrix and row reduce:

$$
\left(\begin{array}{ccc}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right)
$$

Now, if $x \neq y$ and $x \neq z$, then we can divide the second and third rows giving

$$
\left(\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & x+y \\
0 & 1 & x+z
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & x+y \\
0 & 0 & z-y
\end{array}\right)
$$

Now, if $y \neq z$, then we can finish row reducing to give

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Now this matrix, for any augmented version with another column on the right, corresponds to a consistent system of equations. Thus, under our assumptions $x \neq y, x \neq$ $z, y \neq z$, or more simply x, y, z are distinct, the vectors span all of \mathbb{R}^{3}. Conversely, if they aren't all distinct, by symmetry we can assume that $x=y$. But then the matrix reduces as

$$
\left(\begin{array}{ccc}
1 & x & x^{2} \\
1 & x & x^{2} \\
1 & z & z^{2}
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & x & x^{2} \\
0 & 0 & 0 \\
0 & z-x & z^{2}-x^{2}
\end{array}\right),
$$

which will yield an inconsistent system whenever the column of the related augmented matrix doesn't have a 0 in the second row. In other words, any vector $(a, b, c) \in \mathbb{R}^{3}$ for which $a \neq b$ will not be in the span of v_{1}, v_{2}, v_{3}. This means that the span is confined to a plane (and could be just a line depending on whether $x=z$ or not).

Here is a simple example. If $x=2, y=2, z=2$, then we obtain the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
4 \\
4 \\
9
\end{array}\right)
$$

One can check that $-6 v_{1}+5 v_{2}=v_{3}$, which shows that v_{3} is a linear combination of v_{1} and v_{2}. Thus, adding in v_{3} doesn't increase the span of the first two vectors (check why this is true!), and so the span of all three vectors is the same as the span of just v_{1}, v_{2}, which is just a plane.

