TUTORIAL 1

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016
i). In class, we mentioned that the cross product is not associative. That is, we don't always have $u \times(v \times w)=(u \times v) \times w$. Instead, the cross product satisfies an important identity known as the Jacobi identity:

$$
\begin{equation*}
u \times(v \times w)+v \times(w \times u)+w \times(u \times v)=0 . \tag{1}
\end{equation*}
$$

Show, using the identity

$$
u \times(v \times w)=(u \cdot w) \cdot v-(u \cdot v) \cdot w
$$

which we showed in class, that (1) holds for any vectors $u, v, w \in \mathbb{R}^{3}$.
ii). Prove that the diagonals of a square are orthogonal.
iii). Consider the three planes given by

$$
x+2 y+z=5, \quad 2 x+2 y+2 z=4, \quad x+z=-1 .
$$

Using row reduction, find the intersection between all three planes.
iv). Show that if $a d-b c \neq 0$, then the reduced row echelon form of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Advanced Problem (optional):
For any three numbers x, y, z define the three vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
x^{2} \\
y^{2} \\
z^{2}
\end{array}\right) .
$$

For which choices of x, y, z is the set of all linear combinations of the three vectors, $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)$, equal to all of \mathbb{R}^{3} ?

