HOMEWORK 6

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

Solutions are due at the beginning of class on Thursday, November 17. Please put your name and course on your assignment, and make sure to staple your papers.
(1) Determine which of the following sets of vectors are linearly independent in \mathbb{R}^{4}. (a)

$$
v_{1}=\left(\begin{array}{c}
1 \\
2 \\
4 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
3 \\
4 \\
-4 \\
3
\end{array}\right)
$$

(b)
$v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ 3 \\ 5\end{array}\right), \quad v_{2}=\left(\begin{array}{c}7 \\ 100 \\ -10 \\ 11\end{array}\right), \quad v_{3}=\left(\begin{array}{c}-\pi \\ 0 \\ 0 \\ 10\end{array}\right), \quad v_{4}=\left(\begin{array}{c}e \\ 0 \\ \pi^{e} \\ 11\end{array}\right), \quad v_{5}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$.
(c)

$$
v_{1}=\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
0 \\
2 \\
0 \\
-1
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right)
$$

Solution: a). The corresponding matrix with these vectors as its columns is

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
4 & 0 & -4 \\
-1 & 1 & 3
\end{array}\right)
$$

which has RREF

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

As this has only 2 pivots and there are three columns, the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is not linearly independent.
b). This set is not linearly independent as there are 5 vectors in \mathbb{R}^{4}, which must always be linearly dependent. This is because the matrix with these vectors as its columns has 4 rows but 5 columns and hence has at most 4 pivots, and cannot have a pivot in each column.
c). If we put the vectors in a matrix and take the determinant, we find that

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-2 & 1 & 2 & 3 \\
1 & 1 & 0 & 0 \\
1 & 2 & -1 & 0
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ccc}
-2 & 2 & 3 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & 3 \\
-1 & 0
\end{array}\right)=3 \neq 0
$$

Hence the four vectors are linearly independent (and in fact form a basis of \mathbb{R}^{4}).
(2) Find a basis of the space of 2×2 real matrices with trace zero, i.e., those matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$ with $a+d=0$.

Solution: We claim that

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

is such a basis. Indeed, to show its linearly independent, suppose that there is a linear combination

$$
\alpha\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\beta\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\gamma\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right)=0=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then clearly $\alpha=\beta=\gamma=0$, so this is a trivial linear dependency. To show that they span the space of trace zero matrices, suppose that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has trace zero, i.e., $a+d=0$ or $d=-a$. Then clearly

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

so that any matrix in our space is in the span of these three matrices. Hence, they form a basis of our space.
(3) Suppose that $\left\{v_{1}, \ldots v_{k}\right\}$ is a set of vectors in \mathbb{R}^{n} and A is a matrix $A \in M_{m \times n}$. Further suppose that $\left\{A v_{1}, \ldots A v_{k}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{m}. Show that the original set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{n}.

Solution:

Suppose that they are linearly dependent. That is, suppose that there are $c_{1}, \ldots, c_{n} \in \mathbb{R}$, not all equal to zero, for which

$$
c_{1} v_{1}+\ldots+c_{k} v_{k}=0
$$

Multiplying both sides of this equation on the left by A and using the basic properties of matrix arithmetic, we find that

$$
c_{1} A v_{1}+\ldots c_{k} A v_{k}=0
$$

which shows that $\left\{A v_{1}, \ldots A v_{n}\right\}$ is linearly dependent. This contradicts our assumptions about the latter set, and so the vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent.
(4) Find bases for the kernel (null space), row space, and column space of the matrix

$$
A=\left(\begin{array}{cccc}
0 & 2 & 8 & -7 \\
2 & -2 & 4 & 0 \\
-3 & 4 & -2 & 5
\end{array}\right)
$$

Solution:

All three are found using the RREF of A, which is

$$
\left(\begin{array}{llll}
1 & 0 & 6 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The set of solutions in the kernel are those those of the form

$$
\left\{\begin{array}{l}
x_{1}=-6 t \\
x_{2}=-4 t \\
x_{3}=t \\
x_{4}=0,
\end{array}\right.
$$

which is a line with basis $\{(-6,-4,1,0)\}$. The row space has as a basis the non-zero rows in the RREF of A, namely $\{(1,0,6,0),(0,1,4,0),(0,0,0,1)\}$. The column space has as a basis the columns of A corresponding to the three columns with a pivot in the corresponding column of the RREF of A. That is, it has as a basis $\{(0,2,-3),(2,-2,4),(-7,0,5)\}$. In fact, the matrix with these three vectors as columns is invertible (check the determinant to be non-zero, for example), and so another basis of the column space is simply $\left\{e_{1}, e_{2}, e_{3}\right\}$. We could have also found this by taking the transpose of A and row reducing to find the row space of A^{T}.

