HOMEWORK 6

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

Solutions are due at the beginning of class on Thursday, November 17. Please put your name and course on your assignment, and make sure to staple your papers.
(1) Determine which of the following sets of vectors are linearly independent in \mathbb{R}^{4}.
(a)

$$
v_{1}=\left(\begin{array}{c}
1 \\
2 \\
4 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
3 \\
4 \\
-4 \\
3
\end{array}\right)
$$

(b)

$$
v_{1}=\left(\begin{array}{c}
-1 \\
2 \\
3 \\
5
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
7 \\
100 \\
-10 \\
11
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
-\pi \\
0 \\
0 \\
10
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
e \\
0 \\
\pi^{e} \\
11
\end{array}\right), \quad v_{5}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

(c)

$$
v_{1}=\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
0 \\
2 \\
0 \\
-1
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right)
$$

(2) Find a basis of the space of 2×2 real matrices with trace zero, i.e., those matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$ with $a+d=0$.
(3) Suppose that $\left\{v_{1}, \ldots v_{k}\right\}$ is a set of vectors in \mathbb{R}^{n} and A is a matrix $A \in M_{m \times n}$. Further suppose that $\left\{A v_{1}, \ldots A v_{k}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{m}. Show that the original set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{n}.
(4) Find bases for the kernel (null space), row space, and column space of the matrix

$$
A=\left(\begin{array}{cccc}
0 & 2 & 8 & -7 \\
2 & -2 & 4 & 0 \\
-3 & 4 & -2 & 5
\end{array}\right)
$$

