
INDEFINITE THETA FUNCTIONS OF TYPE (n, 1) II: FURTHER
DISCUSSION OF ZWEGERS’ FUNCTIONS AND THE PROOF OF

THEIR MODULARITY

LARRY ROLEN

In the last lecture, we motivated and described Zwegers’ type (n, 1) indefinite theta
functions. Several key objectives remain. Firstly, we have to describe their exact relation
to the theory of harmonic Maass forms, and in particular how to compute their shadows.
After all, something should really only count as a completion if it is “simpler” than the
thing you started with (without some restriction like this, you could always “complete”
a function by adding minus itself to it!). Finally, we have to discuss the proof. Although
we will not give all details of the proof, and although we won’t follow Zwegers’ original
proof, we shall try to emphasize the intuition behind it and explain “why” functions
like E(z) should arise in our theta functions. This will be crucial when we discuss more
general types of indefinite theta functions in the next lecture as well.

1. Relation to harmonic Maass forms

In order to explicitly describe Zwegers’ indefinite theta functions in terms of Bruinier-
Funke’s theory of harmonic Maass forms, we first decompose the function ρ from the last
lecture. For this, note that E can be related to the beta function, which is essentially an
incomplete Gamma function (as required in the Fourier expansions of harmonic Maass
forms). Specifically, for all x ∈ R, we have (cf. Exercise 1)

(1) E(x) = sgn(x)
(
1− β

(
x2
))
,

where for real, non-negative y

β(y) :=

∫ ∞
y

t−
1
2 e−πtdt,

and we have

β(y) =
1√
π

Γ

(
1

2
, πy

)
.

The humble identity (1) will turn out to play several key roles for us.
For any c1, c2 ∈ CQ we may now write ρ(n; τ) as a sum of the expressions

ρj(n; τ) = ρ
cj
j (n; τ) := (−1)j sgn (B(cj, n)) β

(
−B(cj, n)2

Q(cj)
v

)
,

ρ3(n; τ) = ρc1,c23 (n; τ) := sgn (B(c1, n))− sgn (B(c2, n)) .

1
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Specifically, we may decompose ρ as

ρ(n; τ) =


ρ1(n; τ) + ρ2(n; τ) + ρ3(n; τ) if c1, c2 ∈ CQ,
ρ1(n; τ) + ρ3(n; τ) if c1 ∈ CQ c2 ∈ SQ,
ρ2(n; τ) + ρ3(n; τ) if c1 ∈ SQ c2 ∈ CQ,
ρ3(n; τ) if c1, c2 ∈ SQ.

Then we define for any c1, c2 ∈ CQ the series

Θ+
a,b,c1,c2

(τ) = Θ+
A,a,b,c1,c2

(τ) :=
∑

n∈a+Zr
ρ3(n; τ)e(B(n, b))qQ(n),

Θ−a,b,c1,c2(τ) = Θ−A,a,b,c1,c2(τ) :=
∑

n∈a+Zr
(ρ(n; τ)− ρ3(n; τ)) e(B(n, b))qQ(n).

The point of this definition, as the notation suggests, is that Θ+
a,b,c1,c2

is the holomor-

phic part of Θa,b,c1,c2 , and, similarly, Θ−a,b,c1,c2 is the non-holomorphic part.

We want to discuss exactly how we can see Θ+ as a mixed mock modular form and how
to compute its shadow. For this, we require special non-holomophic functions, which
are like those used in the construction of Zwegers’ µ̂. For any a, b ∈ R and τ ∈ H, let

Ra,b(τ) :=
∑
n∈a+Z

sgn(n)β
(
2n2v

)
e(−nb)q−

n2

2 .

Recall that ga,b denotes a special unary theta function

ga,b(τ) :=
∑
n∈a+Z

ne(nb)q
n2

2 .

Similarly to the case of the R function from Chapter 1 of Zwegers’ thesis, one can simply
differentiate to show the following, where

ξk := 2ivk
∂

∂τ

is the shadow operator of weight k (Exercise 2 will ask you to show this):

(2) ξ r
2

(Ra,b) = −v
r−1
2

√
2ga,b.

The non-holomoprhic parts (or equivalently, shadows) have shapes dictated by the fol-
lowing decompositions. If cj ∈ CQ ∩ Zr has relatively prime coordinates, then we write

n = `+Ncj with ` ∈ a+Zr, N ∈ Z, such that
B(cj ,`)

2Q(cj)
∈ [0, 1). As cj ∈ Zr, we may write

the set of such ` as a disjoint union{
` ∈ a+ Zr :

B(cj, `)

2Q(cj)
∈ [0, 1)

}
=
⋃̇

`0∈P0,j

(
`0 + 〈cj〉⊥Z

)
,
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where P0,j is a suitable finite set and where 〈cj〉⊥Z := {λ ∈ Zr : B(cj, λ) = 0}. Then the

following can be shown by a direct computation, where `⊥0 := `0 − B(cj ,`0)

2Q(cj)
cj and

J := {j ∈ {1, 2} : cj ∈ CQ}.

Proposition 1. Suppose that c1, c2 ∈ CQ and that cj ∈ Zr have relatively prime coeffi-
cients. Then we have

ξ r
2

(Θa,b,c1,c2(τ)) =
√

2vr−1

×
∑
j∈I

(−1)j
∑

`0∈P0,j

gcB(cj , `0)

2Q(cj)
,B(cj ,b)

(−2Q (cj) τ)
∑

ν∈`⊥0 +〈cj〉⊥Z

e (B (ν, b⊥)) qQ(ν).

Here, the c denotes taking complex conjugation of the Fourier coefficients. The right-
most sum in the last equation is a theta function on a shifted (r−1)-dimensional lattice,
and so in particular is a modular form of weight (r − 1)/2. Thus, the shadow has a
simple representation in terms of ordinary modular forms.

Example 1. Andrews provided a “Hecke-type double sum” representation of Ramanu-
jan’s fifth order mock theta function f0, which, after rewriting, yields

f0(q) =
1

(q)∞

 ∑
n+j≥0
n−j≥0

−
∑
n+j<0
n−j<0

 (−1)jq
5n2

2
+n

2
−j2 .

A short calculation then shows that we may write this in terms of the type (1, 1) indefinite
theta function

q
1
60

2η(τ)

∑
n∈a+Z2

(sgn(B(n, c1))− sgn(B(n, c2))) q
Q(n)e (B(n, b)) ,

where

Q(j, k) :=
1

2

(
5j2 − 2k2

)
, a :=

(
1
10
0

)
, b :=

(
0
1
4

)
, c1 :=

(
2
5

)
, c2 :=

(
−2

5

)
.

As c1, c2 ∈ CQ, we can apply Zwegers’ theory, and we find that

f0(q) =
q

1
60

2η(τ)
Θ+
a,b,c1,c2

(τ).

Exercise (3) will ask you to compute the shadow of this mock theta function. Similar
examples can be used to show mock modularity and compute the shadows of all of
Ramanujan’s original mock theta functions.

Example 2. Sometimes, indefinite theta functions have enough internal symmetries
to become ordinary modular forms. For example, indefinite theta functions on higher
dimensional lattices can be built out of products of simpler (in)-definite theta series.
We will see an important example of such a decomposition in the next lecture, with
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an application to Gromov-Witten theory. For now, we record the following well-known
Hecke-type expansion for the weight 1 cusp form

η(τ)2 =

( ∑
n,m≥0

−
∑
n,m<0

)
(−1)n+mq

n2

2
+2nm+m2

2
+ 1

2
n+ 1

2
m+ 1

12 .

This can be seen by writing down the associated Artin representation, along the lines of
(and in fact related to) the discussion of Cohen’s results the indefinite theta series σ, σ?

studied in the next lecture.

2. Vignéras’ theorem and the proof of modularity of Zwegers’
functions

The main theoretical tool for showing modularity of theta series such as Zwegers’
is the following result of Vignéras, which determines the appropriate conditions for
multiplicative factors to add into the theta functions while retaining modularity.

Lemma. Let Q be an integral quadratic form of type (r− s, s), and suppose p : Rr → C
satisfies the following differential equation for some λ ∈ Z(

E − ∆Q

2π

)
p = λp,(3)

where E is the Euler operator

E :=
r∑
j=1

xj
∂

∂xj
.

Assuming convergence, the theta function

ΘA,a(z; τ) = v−
λ
2

∑
n∈a+Zn

p
(√

v
(
n+

y

v

))
e(B(n, z))qQ(n)

is a vector-valued Jacobi form of weight r/2 + λ.

How might one find nice solutions to this differential equation? It is difficult to find
all solutions of large-order differential equations, but there is a trick to relate finding
solutions of Vigéras’ equation to a one-dimensional problem. Specifically, one can show
that if c is a fixed vector with Q(c) < 0, then a function

g = f

(
B(x, c)√
−Q(c)

)
satisfies the differential equation for a one-variable function f(z) if

(4) zf ′ − f ′′/(2π)

returns a multiple of f (cf. Exercise 4). This is almost the famous differential equation

y′′ + 2xy′ = 2ny,
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whose solutions are known. In particular, they can be written in terms of iterated
integrals of the complementary error function erfc, which when translated correctly
returns our error function E(z) as a solution. Another family of solutions is given by
the Hermite polynomials, which are discussed in relation to indefinite theta series in
Stopples’ paper “Theta series for indefinite quadratic forms over real number fields.”
These Hermite polynomials are neatly defined by can be defined in terms of iterated
derivatives by

Hm(z) := e2πz
2 ∂m

∂zm

[
e−2πz

2
]
.

We thus have an idea where the function E comes from, and what makes it special.
By (1), it also has the right shape to produce harmonic functions (with respect to the
weight k Laplacian) when plugged into Vignéras’ framework. Doing so directly will fail,
as one gets a divergent series (indeed, the sign term in (1) doesn’t decay at alltowards
infinity). However, Zwegers made the brilliant observation that the difference of two
such functions does. Although this proof takes significant effort (and is one of the more
difficult parts of his proof as a whole), we can get an inkling of what is going on using
our decompositions above. The function β in (1) decays as y →∞, so in some sense the
non-holomorphic part should have an easier time converging. The holomorphic part,
on the other hand, inherits a difference of sign functions (note that by definition the
sign function occurs in every case regardless of whether cj ∈ SQ or not). Thus, in the
summation over the lattice, only certain terms do not vanish in this difference of sign
functions, and the theta function is only really summing over a cone. If this cone is a
region where Q is positive-definite, our theta series will then be convergent, and it will
be modular as we have still summed the original E function over the whole lattice. A
very simple example of such convergence, which you can play with by hand, is given in
Exercise 7.

Finally, we have to make a remark about the cuspidal case. If cj ∈ SQ, then the
discontinuities of the sign function present a problem. Here, we must actually express
this as a limit of vectors cj,t and prove modularity of the limit of Vignéras theta functions.
This is facilitated, once again, by the fact that the sign function is the limiting function
remaining as y →∞ in (1).

3. Exercises

(1) Show (1) by writing
∫ z
0
e−πt

2
dt as sign(z)

∫ |z|
0
e−πt

2
dt and subsituting t =

√
u.

(2) Prove (2).
(3) Compute the shadow of the fifth order mock theta function f0 in Example 1 (if

you need a hint, an equivalent expression is given on page 77 of Zwegers’ thesis).
(4) Fill in the details for the claimed relation of the differential equation (4) to

Vignéras’ differential equation.
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(5) Let

A :=

1 0 0
0 −1 0
0 0 −1


and c ∈ R3 such that Q(c) = −1. Write x ∈ R3 as x = (x1, x2, x3). The
associated bilinear form is (n = (n1, n2, n3))

B(r, n) = n1x1 − n2x2 − n3x3.

In this case, the associate Laplacian is

∆Q =
∂2

∂x21
− ∂2

∂x22
− ∂2

∂x23
,

and the Euler operator is

E = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
.

Then show that

[E ,∆] = −2∆.

Show that if p satisfies Vignéras’ equation with eigenvalue d, we thus have that
∆Qp satisfies it with eigenvalue d− 2.

(6) A function f : Rn \ {0} → R is called positive homogenous of degree k if

(5) f(tx) = tkf(x)

for all t > 0. Show Euler’s homogenous function theorem, which states that a C1
function f is positive homogenous of degree k if and only if

E(f) = kf.

Hint: Differentiate both sides of (5) with respect to t and substitute t = 1.
Conversely, integrate.

In particular, this shows that spherical polynomials (recall that these satisfy
∆Qp = 0 and are assumed to be homogenous) satisfy Vignéras’ equation, con-
firming our earlier claim that (positive definite) spherical theta functions are
modular (as long as they converge, which is clear due to the exponential decay
of terms qQ(n)).

(7) Consider the very simple type (1, 1) form Q(x1, x2) := x21−x22, and let c1 = (1, 2),
c2 = (1, 3), a = (1/3, 0), b = (0, 0). Then with x = (n + 1/3, j) ∈ 1/3 + Z2, we
have (you should write this down explicitly to check)

Θ+
A,a,b,c1,c2

(τ) =
∑
n,j∈Z

(sign(−4j + 2n+ 2/3)− sign(−6j + 2n+ 2/3)) q(n+1/3)2−j2 .

The only terms that are non-vanishing in this sum are those for which

sign(−4j + 2n+ 2/3) = −sign(−6j + 2n+ 2/3)
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(note that neither is ever 0 due to the presence of the 2/3). Show that if this
last condition holds, then Q(n + 1/3, j) > 0, and conclude that Θ+

A,a,b,c1,c2
(τ) is

convergent.
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