Math 2106-D, Foundations of Mathematical Proof SAMPLE FINAL EXAM

Solve 6 of the following 7 problems. Circle the numbers of the problems which are to be graded.

1. Prove or disprove each of the following.
(a) For all sets A, B, and $C,(A \cup B)-C=A \cup(B-C)$.
(b) For all sets A, B, and $C, A-(B \cap C)=(A-B) \cup(A-C)$.
2. Prove or disprove each of the following.
(a) If a and b are real numbers such that the product $a b$ is an irrational number, then either a or b must be an irrational number.
(b) If $2^{n}-1$ is prime, then n must also be prime (hint: consider the identity $a^{x}-1=$ $\left.(a-1)\left(a^{x-1}+a^{x-2}+\ldots+a+1\right)\right)$.
3. (a) Prove that if $a, b \in \mathbb{Z}$, then $a^{2}-4 b-2 \neq 0$.
(b) Prove that for every positive real number x,

$$
\frac{x}{x+1}<\frac{x+1}{x+2} .
$$

4. Define a relation R on \mathbb{R} by saying that $x R y$ if and only if $x^{m}=y^{n}$ for some $m, n \in \mathbb{N}$. Show that this is an equivalence relation. Describe the possible sizes of equivalence classes of this equivalence relation.
5. (a) Show that given any real numbers a, b, c, d with $a<b$ and $c<d$, the intervals (a, b) and (c, d) have the same cardinality.
(b) Use the Cantor-Schröder-Bernstein Theorem to show that $[0,1]$ has the same cardinality as $(0,1)$.
6. Suppose that G is a group, and that H and K are subgroups of G.
(a) Show that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
(b) Show that $H \cap K$ is always a subgroup of G.
7. Let $x_{1}=1$ and

$$
x_{n+1}=\frac{n}{n+1} x_{n}^{2}
$$

(a) Show that $\lim _{n \rightarrow \infty} x_{n}$ exists.
(b) Show that $\lim _{n \rightarrow \infty} x_{n}=0$.

