Math 2106-D, Foundations of Mathematical Proof SAMPLE EXAM 2

1. Show that if r is a real number not equal to 1 , then for every $n \geq 0$, we have

$$
r^{0}+r^{1}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

2. For any real number a, let I_{a} be the interval $[a, a+1)$. Describe an equivalence relation R on \mathbb{R} whose equivalence classes are exactly the sets I_{a} for all $a \in \mathbb{Z}$ (be sure to prove that the relation you write down actually is an equivalence relation).
3. For any $n \in \mathbb{N}$, a partition of n is a representation of n as a sum of a non-inreasing sequence of natural numbers. For example, the partitions of 4 are

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1 .
$$

Let $p(n)$ denote the number of partitions of n. For example, as there are 5 partitions of 4 , we have $p(4)=5$. The number of partitions of n grows very rapidly. Show that this is true by showing that for all $n \geq 2$, we have

$$
p(n) \geq 2^{\lfloor\sqrt{n}\rfloor},
$$

where $\lfloor x\rfloor$ is the floor function which takes any real number x to the greatest integer less than or equal to x. For instance, $\lfloor\pi\rfloor=\lfloor 3.9999\rfloor=\lfloor 3\rfloor=3$. (Hint: Construct a surjection from the set of partitions of n to the power set of $\{1,2, \ldots\lfloor\sqrt{n}\rfloor\}$.)
4. Define a relation R on \mathbb{N} by declaring that $x R y$ if and only if $x=y \alpha^{2}$ for some $\alpha \in \mathbb{Q}$. Show that R is an equivalence relation. Show that each equivalence class has the same cardinality as \mathbb{N}.
5. Given a function $f: A \rightarrow B$ and subsets $Y, Z \subseteq B$, show that $f^{-1}(Y \cap Z)=f^{-1}(Y) \cap$ $f^{-1}(Z)$. (Recall that $f^{-1}(Y)$ for a general function means the preimage of Y, even when there is no inverse function f^{-1}. In the case when f is a bijection, then the preimage of Y is equal to the image of Y under f^{-1}, also denoted by $\left.f^{-1}(Y)\right)$.

