Math 2106-D, Foundations of Mathematical Proof Quiz (ungraded) Solution

November 21, 2017
Compute the following limit in two ways: using the limit theorems and directly from the definition of limits.

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n+1}
$$

Solution:

By using the limit rules, we find that

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n+1}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}}{1+\frac{1}{n}}=\frac{\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)}=\frac{\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}}{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}}=\frac{1-0}{1+0}=1
$$

To prove this directly from the definition, let $\varepsilon>0$. We look at the distance between the n-th term in the sequence, $(n-1) /(n+1)$, and the claimed limit, 1 ,

$$
\left|\frac{n-1}{n+1}-1\right|
$$

We simplify this expression using algebra;

$$
\left|\frac{n-1}{n+1}-1\right|=\left|\frac{n-1}{n+1}-\frac{n+1}{n+1}\right|=\left|\frac{n-1-n-1}{n+1}\right|=\left|\frac{-2}{n+1}\right|=\frac{2}{n+1}
$$

Now

$$
\frac{2}{n+1}<\varepsilon \Longleftrightarrow n>\frac{2}{\varepsilon}-1
$$

Thus, for any $\varepsilon>0$, if $n>N=2 / \varepsilon-1$, then $\left|\frac{n-1}{n+1}-1\right|<\varepsilon$. By the definition of the limit,

$$
\lim _{n \rightarrow \infty} \frac{n-1}{n+1}=1
$$

