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Compute the following limit in two ways: using the limit theorems and directly from the
definition of limits.
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Solution:
By using the limit rules, we find that
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To prove this directly from the definition, let ε > 0. We look at the distance between the
n-th term in the sequence, (n− 1)/(n + 1), and the claimed limit, 1,∣∣∣∣n− 1
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We simplify this expression using algebra;∣∣∣∣n− 1
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Thus, for any ε > 0, if n > N = 2/ε− 1, then
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