Math 2106-D, Foundations of Mathematical Proof

Homework 6
Due October 19, 2017

Do the following problems from Hammack:

Section 12.6: 10
Section 13.1: 6,8,10,14
Section 13.2: 4,6,8
Also turn in the following exercise:
A1 In class, we showed that if two sets A and B are countable (i.e., either finite or countably infinite), then $A \cup B$ is countable too. Using something known as the axiom of choice, one can show the following

Theorem. A countable union of countable sets is countable.
A real number is algebraic if it is the root of some polynomial with integer coefficients. For example, $\sqrt{2}$ is algebraic as it is a root of $x^{2}-2$, and the real root $x=-0.978322 \ldots$ of $7 x^{5}-3 x^{4}+x+10$ is algebraic.

Use this theorem to show that the set of algebraic numbers is countable. Conclude from this that there is at least one number which is not algebraic (such a number is called transcendental).

