Math 2106-D, Foundations of Mathematical Proof
Homework 5
Due October 12, 2017

Do the following problems from Hammack:

Chapter 12.1: 4
Chapter 12.2: 10,12
Chapter 12.3: 2
Chapter 12.4: 8
Chapter 12.5: 4,8

Also turn in the following exercises:

A1 Consider the sequence

$$
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987 \ldots
$$

of Fibonacci numbers. For fixed $n \in \mathbb{N}$, we can look at the sequence of Fibonacci numbers modulo n by reducing each element of the sequence modulo n. For example, when $n=3$, we get the sequence of numbers

$$
0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0 \ldots
$$

Note that this sequence seems to be repeating. In particular, if you kept computing, you would find that this sequence is just the sequence $0,1,1,2,0,2,2,1$ repeated over and over again.
Use the Pigeonhole Principle to show that this kind of pattern always occurs. That is, show that for any $n \in \mathbb{N}$, that the sequence of Fibonacci numbers modulo n is periodic.

A2 Find a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$ (hint: define a piecewise function which has different branches depending on whether $n \in \mathbb{N}$ is even or odd).

