Math 2106-D, Foundations of Mathematical Proof Homework 1
 Due August 31, 2017

Do the following problems from Hammack:
§1.1: $16,26,32, \quad \S 1.2: 8,14 \quad \S 1.3: 8,12,14 \quad \S 1.4: 8,18,20 \quad \S 1.5: 2$ §1.6: $2 \quad \S 1.7: 6 \quad \S 2.1: 2,4,6,14 \quad \S 2.2: 8 \quad \S 2.3: 2,8 \quad \S 2.4: 4 \quad \S 2.5: 6$, 8 §2.6: 6, 12

Additional exercises

A1 The Inclusion-Exclusion Principle, which you saw on Worksheet 1, states that for finite sets A, B,

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Use this principle to determine the number of integers $n \in\{1,2, \ldots, 2017\}$ which are not divisible by 2 or 3 .

A2 For any $\alpha \in \mathbb{R}$, let $X_{\alpha}=\left\{(x, y, \alpha) \mid x, y \in \mathbb{R}, x^{2}+y^{2}=1-\alpha^{2}\right\} \subseteq \mathbb{R}^{3}$.
What geometric object is

$$
\cup_{\alpha \in \mathbb{R}} X_{\alpha} ?
$$

Explain your reasoning and draw a sketch of the situation.

