SOLUTIONS

All problems are worth 10 points. To obtain full credit, you must show your work and write clearly in complete sentences. No calculators or other electronic devices are allowed.

1. Suppose that P, Q, and R are logical statements. Fill out a complete truth table to show that $\sim(P \vee Q \vee R)$ is logically equivalent to $(\sim P) \wedge(\sim Q) \wedge(\sim R)$.
Solution: We first fill in the following truth table:

P	Q	R	$\sim P$	$\sim Q$	$\sim R$	$(\sim P) \wedge(\sim Q) \wedge(\sim R)$	$P \vee Q \vee R$	$\sim(P \vee Q \vee R)$
T	T	T	F	F	F	F	T	F
T	T	F	F	F	T	F	T	F
T	F	T	F	T	F	F	T	F
T	F	F	F	T	T	F	T	F
F	T	T	T	F	F	F	T	F
F	T	F	T	F	T	F	T	F
F	F	T	T	T	F	F	T	F
F	F	F	T	T	T	T	F	T

As the 7 -th and 9 -th columns have the same entries for every possible truth value of the variables P, Q, R, the corresponding statements are logically equivalent, as claimed.
2. Suppose that $x \in \mathbb{R}$. Show that if x^{2} is irrational, then x is also irrational.

Solution:

We will show this using the contrapositive. Thus, suppose x rational. Then we can write $x=a / b$ for integers a and b with $b \neq 0$. Squaring this gives $x^{2}=a^{2} / b^{2}$, which is a ratio of two integers (with non-zero denominator), and thus rational. This establishes the contrapositive, and hence the original claim is true.
3. Show that if A and B are sets whose power sets are equal, that is, for which $\mathcal{P}(A)=$ $\mathcal{P}(B)$, then we have $A=B$. (Hint: Use the fact that any set is a subset of itself.)

Solution:

Suppose that $\mathcal{P}(A)=\mathcal{P}(B)$. Then since any set is a subset of itself, we have $A \subseteq A$. In terms of the power set, this means that $A \in \mathcal{P}(A)=\mathcal{P}(B)$. Again using the definition of power sets, $A \subset B$. By the same reasoning, $B \subseteq A$. Hence, $A=B$, as desired.
4. Show that there are infinitely many prime numbers of the form $6 n+5$ for $n \in \mathbb{N} \cup$ $\{0\}$ (Hint: Modify Euclid's proof that there are infinitely many primes. Instead of considering the number $N=p_{1} \cdot \ldots \cdot p_{k}+1$ as in Euclid's proof, consider the number $\left.N=6 \cdot p_{1} \cdot \ldots \cdot p_{k}-1\right)$.
Suppose that there are only finitely many primes of the form $6 n+5$. Then we can list them as p_{1}, \ldots, p_{k}, where k is the number of such primes. Consider the number
$N=6 \cdot p_{1} \cdot \ldots \cdot p_{k}-1$. Then no prime $p \in\left\{p_{1}, \ldots, p_{k}\right\}$ divides N, as if it did, then $p \mid\left(6 \cdot p_{1} \cdot \ldots \cdot p_{k}\right)$ and $p \mid N$. But then p also divides the difference of these two numbers, which is 1 , and this isn't possible for an integer which is at least 2 .

Thus, N is not divisible by any prime on the list of all primes which are 5 modulo 6 . Combining with the Fundamental Theorem of Arithmetic, we find that N factors as a product of primes q_{1}, \ldots, q_{ℓ} which are all congruent to $0,1,2,3$, or 4 modulo 6 . If an integer is congruent to 0,2 , or 4 modulo 6 , then it is even, and the only even prime is 2 . Similarly, the only prime which is $3 \bmod 6$ is 3 itself (as any number which is $3 \bmod 6$ is divisible by 3$)$. Thus, $N=q_{1} \cdot \ldots \cdot q_{\ell} \equiv 1 \cdot \ldots \cdot 1 \cdot 2^{m} 3^{n}(\bmod 6)$, where $m, n \geq 0$ are the powers of 2 and 3 appearing in the prime factorization of N. Thus, N is congruent to 0 (if both $m, n>0$), 1 (if $m=n=0$), 2 (if $n=0$ and m is odd), 3 (if $m=0$ and $n>0$), or 4 (if $n=0$ and m is positive and even), modulo 6 . In particular, N can't be congruent to $5 \bmod 6$. But from the definition of N, we find that $N \equiv-1 \equiv 5(\bmod 6)$. This is a contradiction. Thus, there are infinitely many primes of the form $5 n+6$.
5. Show if x is a positive real number, then

$$
x+\frac{4}{x} \geq 4
$$

Solution:

As x is positive, we can multiply both sides of the inequality to find that $x+\frac{4}{x} \geq 4$ if and only if $x^{2}+4 \geq 4 x$, which is equivalent to $x^{2}-4 x+4 \geq 0$. Noting that $x^{2}-4 x+4=(x-2)^{2}$, and that the square of any real number is positive, we find that the last inequality holds for all x. As this inequality is true for positive x if and only if $x+\frac{4}{x} \geq 4$ (both of the reductions to this inequality were if and only if statements), this holds for all positive x as well.

