Math 4150-B, Foundations of Mathematical Proof SAMPLE FINAL EXAM

1. (a) Compute the Jacobi symbols $\left(\frac{120}{91}\right)$ and $\left(\frac{120}{93}\right)$.
(b) For which primes p is 10 a square modulo p ?
2. Show that the Diophantine equation $y^{2}=x^{3}-5$ has no integral solutions.
3. For each of the following equations, determine whether or not there are any integral solutions. If there are, find all solutions.
(a) $13 x+30 y=19$
(b) $8 x-12 y+20 z=6$
4. Show that if the arithmetic function $f(n)$ is multiplicative, then so is the function

$$
g(n)=\sum_{d \mid n} f(d)^{5}
$$

5. Prove that there are only finitely many rational numbers $\frac{m}{n}$ such that

$$
\left|\sqrt{2}-\frac{m}{n}\right|<\frac{1}{n^{3}} .
$$

6. Find a Pythagorean triple such that the difference of the first two (smaller) numbers is 1 , and every entry is at least 100 .
7. Show that if $E: y^{2}=x^{3}+A x+B$ is an elliptic curve over the real numbers, and if $P \neq 0$ (i.e., P is not the point at infinity) is a point on E which satisfies $2 P=0$, then $P=(x, 0)$ where x is a root of $x^{3}+A x+B$.
