Math 4150-B, Foundations of Mathematical Proof SAMPLE EXAM 2

1. Suppose that p and q are both odd primes, and that $q=4 p+1$. Show that 2 is a primitive root modulo q. (Hint: Consider Euler's Criterion)
2. (a) Suppose that r is a primitive root modulo a prime p. Since $-r$ is also relatively prime to p, it most be some power of r modulo p. Make this explicit, i.e., find an integer a such that $-r \equiv r^{a}(\bmod p)$.
(b) Suppose now that p is an odd prime, and assume the notation of part a). Find a simple formula for the order of $-r$ modulo p.
3. Show that a is a primitive root modulo n if it is relatively prime to n and $a^{\varphi(n) / p} \not \equiv 1$ $(\bmod n)$ for all primes $p \mid \varphi(n)$.
4. Consider the von Mangoldt function, given by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n \text { is a positive power of a prime } p \\ 0 & \text { else }\end{cases}
$$

(a) Show that the summatory function of Λ is $\sum_{d \mid n} \Lambda(d)=\log n$.
(b) Show that

$$
\Lambda(n)=-\sum_{d \mid n} \mu(d) \log d
$$

5. (a) State Lucas' Converse of Fermat's Little Theorem.
(b) Let $F_{n}=2^{2^{n}}+1$ denote the n-th Fermat number. Show that if there is an integer x such that $x^{2^{2^{n}}} \equiv 1\left(\bmod F_{n}\right)$ and $x^{2^{2^{n}-1}} \not \equiv 1\left(\bmod F_{n}\right)$, then F_{n} is prime.
