
Math 4150-B, Intro to Number Theory
EXAM 2 Solutions

1. Show that if Fn = 22n + 1, the n-th Fermat number, is a prime, then every quadratic
non-residue modulo Fn is a primitive root (Hint: How many primitive roots, quadratic
non-residues are there?).

Solution:

There are (Fn − 1)/2 quadratic non-residues modulo Fn. Moreover, since there is a
primitive root modulo Fn (its a prime), there are ϕ(ϕ(Fn)) = ϕ(22n) = 22n−1

(2− 1) =
22n−1

= (Fn − 1)/2 primitive roots. Furthermore, every primitive root is a quadratic
non-residue, as if r ≡ x2, then r(Fn−1)/2 ≡ xFn−1 ≡ 1 by Euler’s Theorem, contradicting
that r is a primitive root. Thus, the sets of primitive roots and quadratic non-residues
are the same, as one contains the other and they have the same size.

2. (a) Suppose that r is a primitive root modulo an odd prime p. Show that

(p− 1)! ≡ r
p(p−1)

2 (mod p)

(Hint: Note that (p− 1)! (mod p) is a product of one representative from each of
the different invertible congruence classes modulo p.)

(b) Use part (a) directly to give a proof of Wilson’s Theorem for odd primes p, namely,
that

(p− 1)! ≡ −1 (mod p).

Solution:

(a) Following the hint, and noting that the powers r1, r2, . . . , rp−1 hit all the invertible
residue classes modulo p (since r is a primitive root), we see that (p− 1)! is congruent
modulo p to r1 · r2 · . . . · rp−1 = r1+2+...+(p−1) = rp(p−1)/2.

(b) Since a = r(p−1)/2 has square congruent to rp−1 ≡ 1 (mod p), we have a2 ≡ 1
(mod p). As we’ve proven in class (and can deduce from the facts that a2 − 1 =
(a + 1)(a − 1) and that a product of numbers is 0 modulo a prime if and only if one
of the factors is), we know that a ≡ ±1 (mod p). But taking r to be a primitive root
(which we know exists modulo any prime), we know that in this case a isn’t congruent
to 1, or else the order of r would be too small. Thus, in the situation of (a), since p is
odd, we have (p− 1)! ≡ ap ≡ (−1)p ≡ −1 (mod p).

3. The number p = 65, 537 = 224 + 1 is a Fermat prime. Use problem 1 above to show
that 3 is a primitive root modulo p.

Solution: By problem 1, it suffices to show that 3 is a quadratic non-residuel By

quadratic reciprocity (note: p ≡ 1 (mod 4) and p ≡ (−1)16 + 1 ≡ 2 (mod 3)),
(

3
p

)
=(

p
3

)
=
(
2
3

)
= −1 (the last symbols is −1 as 12 ≡ 22 ≡ 1 (mod 3)), as desired.



4. Suppose that a function f(n) is a multiplicative function with summatory function∑
d|n f(d) = nσ0(n), where σ0(n) =

∑
d|n 1 is the number of divisors of n. Use Möbius

inversion to compute f(100).

Solution: Möbius inversion tells us that

f(n) =
∑
d|n

µ(d) · σ0(n/d) · (n/d).

The divisors of 100 are 1, 2, 4, 5, 10, 20, 25, 50, and 100. The µ values of these numbers
are, respectively, 1,−1, 0,−1, 1, 0, 0, 0, 0, the complementary divisors n/d are, respec-
tively, 100, 50, 25, 20, 10, 5, 4, 2, 1. Thus, f(100) = σ0(100) · 100− σ0(50) · 50− σ0(20) ·
20 + σ0(10) · 10 = 900− 300− 120 + 40 = 520.

5. (a) Suppose that r is a primitive root modulo an odd prime p. Find the index
indr(−1).

(b) It turns out that 13 is a primitive root modulo the prime 479. Use this information,
and part (a), to determine whether x4 ≡ −13 (mod 479) has a solution (you
don’t need to compute this solution). If it has a solution, determine how many
incongruent solutions it has.

Solution:

(a) As in problem 2, r(p−1)/2 is a number which isn’t 1 mod p but whose square is, and
hence r(p−1)/2 ≡ −1 (mod p). Thus, the index of −1 is (p− 1)/2.

(b) Taking indices of both sides, this equation reduces to 4 · ind13(x) ≡ ind13(−1) +
ind13(13) ≡ (p− 1)/2 + 1 ≡ (p+ 1)/2 = 240 (mod 478). This linear congruence has a
solution, in fact 2 solutions, as (4, 478) = 2|240.


