1. Show that if $F_{n}=2^{2^{n}}+1$, the n-th Fermat number, is a prime, then every quadratic non-residue modulo F_{n} is a primitive root (Hint: How many primitive roots, quadratic non-residues are there?).

Solution:

There are $\left(F_{n}-1\right) / 2$ quadratic non-residues modulo F_{n}. Moreover, since there is a primitive root modulo F_{n} (its a prime), there are $\varphi\left(\varphi\left(F_{n}\right)\right)=\varphi\left(2^{2^{n}}\right)=2^{2^{n-1}}(2-1)=$ $2^{2^{n-1}}=\left(F_{n}-1\right) / 2$ primitive roots. Furthermore, every primitive root is a quadratic non-residue, as if $r \equiv x^{2}$, then $r^{\left(F_{n}-1\right) / 2} \equiv x^{F_{n}-1} \equiv 1$ by Euler's Theorem, contradicting that r is a primitive root. Thus, the sets of primitive roots and quadratic non-residues are the same, as one contains the other and they have the same size.
2. (a) Suppose that r is a primitive root modulo an odd prime p. Show that

$$
(p-1)!\equiv r^{\frac{p(p-1)}{2}} \quad(\bmod p)
$$

(Hint: Note that $(p-1)!(\bmod p)$ is a product of one representative from each of the different invertible congruence classes modulo p.)
(b) Use part (a) directly to give a proof of Wilson's Theorem for odd primes p, namely, that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

Solution:

(a) Following the hint, and noting that the powers $r^{1}, r^{2}, \ldots, r^{p-1}$ hit all the invertible residue classes modulo p (since r is a primitive root), we see that $(p-1)$! is congruent modulo p to $r^{1} \cdot r^{2} \cdot \ldots \cdot r^{p-1}=r^{1+2+\ldots+(p-1)}=r^{p(p-1) / 2}$.
(b) Since $a=r^{(p-1) / 2}$ has square congruent to $r^{p-1} \equiv 1(\bmod p)$, we have $a^{2} \equiv 1$ $(\bmod p)$. As we've proven in class (and can deduce from the facts that $a^{2}-1=$ $(a+1)(a-1)$ and that a product of numbers is 0 modulo a prime if and only if one of the factors is), we know that $a \equiv \pm 1(\bmod p)$. But taking r to be a primitive root (which we know exists modulo any prime), we know that in this case a isn't congruent to 1 , or else the order of r would be too small. Thus, in the situation of (a), since p is odd, we have $(p-1)!\equiv a^{p} \equiv(-1)^{p} \equiv-1(\bmod p)$.
3. The number $p=65,537=2^{2^{4}}+1$ is a Fermat prime. Use problem 1 above to show that 3 is a primitive root modulo p.
Solution: By problem 1, it suffices to show that 3 is a quadratic non-residuel By quadratic reciprocity (note: $p \equiv 1(\bmod 4)$ and $\left.p \equiv(-1)^{16}+1 \equiv 2(\bmod 3)\right),\left(\frac{3}{p}\right)=$ $\left(\frac{p}{3}\right)=\left(\frac{2}{3}\right)=-1\left(\right.$ the last symbols is -1 as $\left.1^{2} \equiv 2^{2} \equiv 1(\bmod 3)\right)$, as desired.
4. Suppose that a function $f(n)$ is a multiplicative function with summatory function $\sum_{d \mid n} f(d)=n \sigma_{0}(n)$, where $\sigma_{0}(n)=\sum_{d \mid n} 1$ is the number of divisors of n. Use Möbius inversion to compute $f(100)$.
Solution: Möbius inversion tells us that

$$
f(n)=\sum_{d \mid n} \mu(d) \cdot \sigma_{0}(n / d) \cdot(n / d)
$$

The divisors of 100 are $1,2,4,5,10,20,25,50$, and 100 . The μ values of these numbers are, respectively, $1,-1,0,-1,1,0,0,0,0$, the complementary divisors n / d are, respectively, $100,50,25,20,10,5,4,2,1$. Thus, $f(100)=\sigma_{0}(100) \cdot 100-\sigma_{0}(50) \cdot 50-\sigma_{0}(20)$. $20+\sigma_{0}(10) \cdot 10=900-300-120+40=520$.
5. (a) Suppose that r is a primitive root modulo an odd prime p. Find the index $\operatorname{ind}_{r}(-1)$.
(b) It turns out that 13 is a primitive root modulo the prime 479. Use this information, and part (a), to determine whether $x^{4} \equiv-13(\bmod 479)$ has a solution (you don't need to compute this solution). If it has a solution, determine how many incongruent solutions it has.

Solution:

(a) As in problem $2, r^{(p-1) / 2}$ is a number which isn't $1 \bmod p$ but whose square is, and hence $r^{(p-1) / 2} \equiv-1(\bmod p)$. Thus, the index of -1 is $(p-1) / 2$.
(b) Taking indices of both sides, this equation reduces to $4 \cdot \operatorname{ind}_{13}(x) \equiv \operatorname{ind}_{13}(-1)+$ $\operatorname{ind}_{13}(13) \equiv(p-1) / 2+1 \equiv(p+1) / 2=240(\bmod 478)$. This linear congruence has a solution, in fact 2 solutions, as $(4,478)=2 \mid 240$.

