
Math 4150-B, Intro to Number Theory
EXAM 1

February 13, 2018

Solutions

1. Let F0, F1, F2, . . . be the Fibonacci numbers, given by F0 = F1 = 1 and Fn+1 =
Fn +Fn−1 for each n ≥ 1. Prove that the gcd of two consecutive Fibonacci numbers is
always 1.

Solution:

Suppose that two consecutive Fibonacci numbers shared a common factor larger than
1. That is, suppose that p|Fn, Fn+1 for some n and for some prime p. Then by the
definition of Fibonacci numbers, p divides Fn+1−Fn = Fn−1. Similarly, since p divides
both Fn and Fn−1, p divides the difference, Fn−2. Continuing in this way, we find that
pF1 and F0, namely, p|(1, 1). But this is a contradiction, as p|1 implies p = ±1, but p
was a prime.

2. If a and b are relatively prime natural numbers, find, with proof, the greatest common
divisor (a2 + b2, a + b). and prove your answer.

Solution:

Suppose that a prime p divides both a + b and a2 + b2. As p|(a + b), we have a ≡ −b
(mod p). Thus, a2 + b2 ≡ 2b2 ≡ 0 (mod p). There are two cases. First, suppose that
p is odd. In this case, we have that p|b2, and so p|b. But then a ≡ −0 ≡ 0 (mod p).
This contradicts the assumption that a and b are relatively prime. Thus, no odd prime
can divide the gcd of these two numbers. Now we consider the case when p = 2. We
have shown that the gcd in question is always 1 or 2, and need to distinguish between
these cases. Now2 divides both a2 + b2 and a + b if and only if both of these numbers
are even. This occurs if and only if the parity of a and b are equal. Since a and b are
relatively prime, they cannot both be even, so this happens if and only if a and b are
both odd. Furthermore, if a and b are both odd, then a2 and b2 are too, so the gcd of
the two numbers really is odd. Thus, (a2 + b2, a + b) = 1

2

(
3 + (−1)a+b

)
(this is just a

slightly more convenient way of writing this piecewise function, and expressing it via
its values in 2 cases is also ok).

3. (a) Compute ϕ(1000).

(b) Use Euler’s theorem to find the last three digits of 135602.

Solution:

Using the multiplicivity of ϕ and the formula ϕ(pn) = pn−pn−1 for its values on prime
powers, we compute ϕ(1000) = ϕ(23)ϕ(53) = (23 − 22) (53 − 52) = (8− 4)(125− 25) =
4 · 100 = 400. Thus, if (a, 1000) = 1, i.e., if a is odd and not divisible by 5, Euler’s
theorem tells us that a400 ≡ 1 (mod 1000). Thus, since 13 satisfies this condition, we
have 135602 ≡ 135600 · 132 ≡ 13400·14 · 169 ≡ 1 · 169 ≡ 169 (mod 1000). Thus, the last
three digits in question are 169.



4. Find all integers x which satisfy the following system of linear congruences:

x ≡ 3 (mod 5),

x ≡ 7 (mod 8),

x ≡ 5 (mod 7).

Solution:

We will apply the Chinese Remainder Theorem. This is applicable as all three moduli
are pairwise coprime. In the notation of the proof we gave in class, we have M1 = 56,
M2 = 35, and M3 = 40. We now look for inverses yj of each Mj modulo mj. For j = 1,
we want the inverse of 56 modulo 5. We first reduce 56 mod 5 to get 1, which is clearly
its own inverse, y1 = 1. We next want an inverse of 35 modulo 8. Reducing, we obtain
3y2 ≡ 1 (mod 8), so we can take y2 = 3. Finally, for j = 3, we want to find an inverse
of 40 modulo 7. That is, we want an inverse of 5 mod 7. The reduced representative
mod 7 is quickly found to be 3 (by guess-and-check, for example). Thus, we can take
y3 = 3. Thus, our solution is x = 3 · 56 · 1 + 7 · 35 · 3 + 5 · 40 · 3 = 168 + 735 + 600 ≡
168 + 175 + 40 ≡ 383 ≡ 103 (mod 280). This means that all integers x satisfying the
system are those integers satisfying x ≡ 103 (mod 280).

5. Use the general theorem from class on the set of solutions (i.e., brute force guessing
isn’t allowed, and in each part you must state which case of the general theorem
applies/what it says) to linear congruences to solve the following equations:

(a) 2x ≡ 6 (mod 10).

(b) 5x ≡ 7 (mod 10).

(c) 3x ≡ 7 (mod 10).

Solution: We know that the equation ax ≡ b (mod m) has no solutions if d = (a,m) -
b, and has d distinct solutions mod m otherwise.

In (a), we have (2, 10) = 2|6, and so there are two different solutions modulo 10. To
find them, we first find a particular solution. For this, we want to solve the linear
diophantine equation 2x+ 10y = 6(it doesn’t matter if we call the second factor 10y or
−10y). There is a common factor of 2 in all terms, so we can reduce to the equation
x + 5y = 3. Since the coefficients of x and y, 1 and −5, are relatively prime, we can
find the linear combination we want by finding a linear combination of 1 and 5 which
gives 1, and then we can multiply the whole equation by 3. This is easy in this case;
we have simply 1 · 1 + 0 · 5 = 1. Multiplying by 3 gives us 3 · 1 + 0 · 5 = 3. Thus, a
particular solution to the above equation is x = 3. This equation is really an equation
modulo 5, as seen by the above argument where we divided out by 2’s, and so the
solutions modulo 10 are the two congruence classes lying “above” the class of 3 mod
5, namely x ≡ 3, 8 (mod 10). This is also exactly what the formula from the proof of
our main theorem on linear congruences says.

For (b), we find that (5, 10) = 5 - 7, so there are no solutions.



For (c), we have (3, 10) = 1, and so there is a unique solution modulo 10. To find this,
we can find an inverse of 3 mod 10, and then we would have x ≡ 3 · 7 (mod 10) as
our solution. To find the inverse of 3 mod 10, we perform the Euclidean Algorithm,
yielding 10 = 3 · 3 + 1, 3 = 3 · 1 = 0, and so 10 − 3 · 3 = 1. Reducing this equation
mod 10 shows that 3 ≡ −3 ≡ 7 (mod 10). Now 3 · 7 ≡ −3 · 7 ≡ −21 ≡ −1 (mod 10).
Thus, the solutions to (c) are x ≡ −1 (mod 10) (or 9 mod 10 if you prefer the reduced
representative between 0 and 9).


