Conjectures of Andrews on partition-theoretic q-series

Larry Rolen

Vanderbilt University
October 14, 2023

Questions of Andrews

- 1986 Monthly: Andrews posed conjectures from experiments.

Questions of Andrews

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook: $\left((a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)\right)$:

$$
\begin{gathered}
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}=: \sum_{n \geq 0} S(n) q^{n} \\
=1+q-q^{2}+2 q^{3}-2 q^{4}+q^{5}+q^{7}-2 q^{8}+2 q^{10}-q^{12}-2 q^{13}+O\left(q^{14}\right) .
\end{gathered}
$$

Questions of Andrews

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook: $\left((a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)\right)$:

$$
\begin{gathered}
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}=: \sum_{n \geq 0} S(n) q^{n} \\
=1+q-q^{2}+2 q^{3}-2 q^{4}+q^{5}+q^{7}-2 q^{8}+2 q^{10}-q^{12}-2 q^{13}+O\left(q^{14}\right) .
\end{gathered}
$$

Conjecture (Andrews)

The $S(n)$ are zero infinitely often, but lim sup $|S(n)|=+\infty$.

Questions of Andrews

- 1986 Monthly: Andrews posed conjectures from experiments.
- In Ramanujan's Lost Notebook: $\left((a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)\right)$:

$$
\begin{gathered}
\sigma(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{(-q ; q)_{n}}=: \sum_{n \geq 0} S(n) q^{n} \\
=1+q-q^{2}+2 q^{3}-2 q^{4}+q^{5}+q^{7}-2 q^{8}+2 q^{10}-q^{12}-2 q^{13}+O\left(q^{14}\right) .
\end{gathered}
$$

Conjecture (Andrews)

The $S(n)$ are zero infinitely often, but limsup $|S(n)|=+\infty$.

- No $|S(n)|$ for $n \leq 1600$ is ≥ 4, but term can exceed 10^{13}.

What is going on?

- These strange numerical phenomena are a hint of structure.

What is going on?

- These strange numerical phenomena are a hint of structure.
- Andrews-Dyson-Hickerson: The conjecture is true, ties coefficients to arithmetic in $\mathbb{Q}(\sqrt{6})$.

What is going on?

- These strange numerical phenomena are a hint of structure.
- Andrews-Dyson-Hickerson: The conjecture is true, ties coefficients to arithmetic in $\mathbb{Q}(\sqrt{6})$.
- Generating function version: indefinite theta function

$$
q \sigma\left(q^{24}\right)=\sum_{a>6|b|}\left(\frac{12}{a}\right)(-1)^{b} q^{a^{2}-24 b^{2}} .
$$

Even deeper structure

- Cohen: σ has a friend,

$$
\sigma^{*}(q)=-2 \sum_{n \geq 0} q^{n+1}\left(q^{2}, q^{2}\right)_{n}
$$

Even deeper structure

- Cohen: σ has a friend,

$$
\sigma^{*}(q)=-2 \sum_{n \geq 0} q^{n+1}\left(q^{2}, q^{2}\right)_{n}
$$

- Together, σ, σ^{*} encode a Maass waveform.

Even deeper structure

- Cohen: σ has a friend,

$$
\sigma^{*}(q)=-2 \sum_{n \geq 0} q^{n+1}\left(q^{2}, q^{2}\right)_{n}
$$

- Together, σ, σ^{*} encode a Maass waveform.
- Zwegers: These are analogues of the mock theta functions in his thesis; give "mock Maass theta functions."

Even deeper structure

- Cohen: σ has a friend,

$$
\sigma^{*}(q)=-2 \sum_{n \geq 0} q^{n+1}\left(q^{2}, q^{2}\right)_{n}
$$

- Together, σ, σ^{*} encode a Maass waveform.
- Zwegers: These are analogues of the mock theta functions in his thesis; give "mock Maass theta functions." Mock theta functions also discovered "experimentally" by Ramanujan.

Even deeper structure

- Cohen: σ has a friend,

$$
\sigma^{*}(q)=-2 \sum_{n \geq 0} q^{n+1}\left(q^{2}, q^{2}\right)_{n}
$$

- Together, σ, σ^{*} encode a Maass waveform.
- Zwegers: These are analogues of the mock theta functions in his thesis; give "mock Maass theta functions." Mock theta functions also discovered "experimentally" by Ramanujan.
- Zagier: These are period functions of the Maass waveform, and give quantum modular forms.

Other functions

- Another function from the Lost Notebook:

$$
v_{1}(q):=\sum_{n \geq 0} \frac{q^{\frac{n(n+1)}{2}}}{\left(-q^{2} ; q^{2}\right)_{n}}=: \sum_{n \geq 0} V_{1}(n) q^{n}
$$

Other conjectures

Conjecture (Andrews)
We have that $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$ away from set of density 0 .

Other conjectures

Conjecture (Andrews)
We have that $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$ away from set of density 0 .

Remark

Andrews' original conj. didn't include the set of density 0 cond n.

Other conjectures

Conjecture (Andrews)
We have that $\left|V_{1}(n)\right| \rightarrow \infty$ as $n \rightarrow \infty$ away from set of density 0 .

Remark

Andrews' original conj. didn't include the set of density 0 cond n.

Conjecture (Andrews)
For almost all $n, V_{1}(n), V_{1}(n+1), V_{1}(n+2)$ and $V_{1}(n+3)$ are two positive and two negative numbers.

Data

Figure 1. $V_{1}(n)$ for $n=1, \ldots, 1000$

Main Result

Theorem (Folsom, Males, R., Storzer (2023))
The twos conjectures of Andrews above are true.

Asymptotics near roots of unity $\zeta=e(\alpha)$ of order m

Theorem (Folsom, Males, R., Storzer (2023))
(1) If $4 \nmid m$, then $v_{1}\left(\zeta e^{-z}\right)=O(1)$ as $z \rightarrow 0$.

Asymptotics near roots of unity $\zeta=e(\alpha)$ of order m

Theorem (Folsom, Males, R., Storzer (2023))
(1) If $4 \nmid m$, then $v_{1}\left(\zeta e^{-z}\right)=O(1)$ as $z \rightarrow 0$.
(2) If $4 \mid m$, then as $z \rightarrow 0$,

$$
\begin{aligned}
v_{1}\left(\zeta e^{-z}\right) & =e^{\frac{16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{z}}\left(\gamma_{(\alpha)}^{+}+O(|z|)\right) \\
& +e^{\frac{-16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{-z}}\left(\gamma_{(\alpha)}^{-}+O(|z|)\right) .
\end{aligned}
$$

Asymptotics near roots of unity $\zeta=e(\alpha)$ of order m

Theorem (Folsom, Males, R., Storzer (2023))
(1) If $4 \nmid m$, then $v_{1}\left(\zeta e^{-z}\right)=O(1)$ as $z \rightarrow 0$.
(2) If $4 \mid m$, then as $z \rightarrow 0$,

$$
\begin{aligned}
v_{1}\left(\zeta e^{-z}\right) & =e^{\frac{16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{z}}\left(\gamma_{(\alpha)}^{+}+O(|z|)\right) \\
& +e^{\frac{-16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{-z}}\left(\gamma_{(\alpha)}^{-}+O(|z|)\right) .
\end{aligned}
$$

Here using Bloch-Wigner dilogarithm: $V=\mathrm{D}(e(1 / 6)) \frac{i}{8}$, gamma numbers e.g.:

Asymptotics near roots of unity $\zeta=e(\alpha)$ of order m

Theorem (Folsom, Males, R., Storzer (2023))
(1) If $4 \nmid m$, then $v_{1}\left(\zeta e^{-z}\right)=O(1)$ as $z \rightarrow 0$.
(2) If $4 \mid m$, then as $z \rightarrow 0$,

$$
\begin{aligned}
v_{1}\left(\zeta e^{-z}\right) & =e^{\frac{16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{z}}\left(\gamma_{(\alpha)}^{+}+O(|z|)\right) \\
& +e^{\frac{-16 V}{z m^{2}}} \sqrt{\frac{2 \pi i}{-z}}\left(\gamma_{(\alpha)}^{-}+O(|z|)\right) .
\end{aligned}
$$

Here using Bloch-Wigner dilogarithm: $V=\mathrm{D}(e(1 / 6)) \frac{i}{8}$, gamma numbers e.g. $: \gamma^{+}:=\gamma_{(1 / 4)}^{+}=\gamma_{(3 / 4)}^{-}=\frac{1}{2 \sqrt[4]{3(2-\sqrt{3})}}$ and
$\gamma^{-}:=\gamma_{(1 / 4)}^{-}=\gamma_{(3 / 4)}^{+}=\frac{1}{2 \sqrt[4]{3(2+\sqrt{3})}}$.

"Plugging into" Wright's Circle Method

Theorem (Folsom, Males, R., Storzer (2023))
As $n \rightarrow \infty$ we have

$$
\begin{aligned}
V_{1}(n)= & (-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{e^{\sqrt{2|V| n}}}{\sqrt{n}}\left(\gamma^{+}+(-1)^{n} \gamma^{-}\right) \\
& \times\left(\cos (\sqrt{2|V| n})-(-1)^{n} \sin (\sqrt{2|V| n})\right)\left(1+O\left(n^{-\frac{1}{2}}\right)\right) \\
& +O\left(n^{-\frac{1}{2}} e^{\sqrt{\frac{I V \mid n}{2}}}\right) .
\end{aligned}
$$

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

- The sign behavior of $(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}$ for $n(\bmod 4)$ is clear.

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

- The sign behavior of $(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}$ for $n(\bmod 4)$ is clear.Thus, its enough to study the signs of

$$
\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})
$$

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

- The sign behavior of $(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}$ for $n(\bmod 4)$ is clear.Thus, its enough to study the signs of

$$
\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})
$$

- For large n, values $\cos (\sqrt{2|V|(n+j)})$ (resp. $\sin (\sqrt{2|V|(n+j)}))$ for $j \in\{0,1,2,3\}$ are close.

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

- The sign behavior of $(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}$ for $n(\bmod 4)$ is clear.Thus, its enough to study the signs of

$$
\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})
$$

- For large n, values $\cos (\sqrt{2|V|(n+j)})$ (resp. $\sin (\sqrt{2|V|(n+j)}))$ for $j \in\{0,1,2,3\}$ are close.
- Main term "wins" if not "very" close to root of $\cos (x) \pm \sin (x)$.

Sign pattern explanation (Conjecture 2)

- Asymptotics for $V_{1}(n)$ reduce us to study signs of

$$
(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})\right) .
$$

- The sign behavior of $(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}$ for $n(\bmod 4)$ is clear.Thus, its enough to study the signs of

$$
\cos (\sqrt{2|V| n})+(-1)^{n+1} \sin (\sqrt{2|V| n})
$$

- For large n, values $\cos (\sqrt{2|V|(n+j)})$ (resp. $\sin (\sqrt{2|V|(n+j)}))$ for $j \in\{0,1,2,3\}$ are close.
- Main term "wins" if not "very" close to root of $\cos (x) \pm \sin (x)$. Erdös-Turán $+\delta \Longrightarrow$ fails $\ll \sqrt{X}$ of time.

Other conjectures for $V_{1}(n)$

Conjecture (Andrews)

For $n \geq 5$ there is an infinite sequence
$N_{5}=293, N_{6}=410, N_{7}=545, N_{8}=702, \ldots, N_{n} \geq 10 n^{2}, \ldots$ such that $V_{1}\left(N_{n}\right), V_{1}\left(N_{n}+1\right), V_{1}\left(N_{n}+2\right)$ all have the same sign.

Other conjectures for $V_{1}(n)$

Conjecture (Andrews)

For $n \geq 5$ there is an infinite sequence
$N_{5}=293, N_{6}=410, N_{7}=545, N_{8}=702, \ldots, N_{n} \geq 10 n^{2}, \ldots$ such that $V_{1}\left(N_{n}\right), V_{1}\left(N_{n}+1\right), V_{1}\left(N_{n}+2\right)$ all have the same sign.

Conjecture (Andrews)

The numbers $\left|V_{1}\left(N_{n}\right)\right|,\left|V_{1}\left(N_{n}+1\right)\right|,\left|V_{1}\left(N_{n}+2\right)\right|$ contain a local minimum of the sequence $\left|V_{1}(j)\right|$.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): $\pi^{2} /|V| \notin \mathbb{Q}$.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): $\pi^{2} /|V| \notin \mathbb{Q}$. We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): $\pi^{2} /|V| \notin \mathbb{Q}$. We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.
- Up to 5 million coefficients (715 sign pattern failures), all of our integers are within 2 of the conjectural infinite sequence.

Diophantine Analysis

- Conjecture 4 seems to be explained by Conj. $3+$ our asymptotic for $v_{1}(n)$.
- The "bad numbers" in Conjecture 3 correspond to being close to a root of $\cos (x) \pm \sin (x)$.
- To do Diophantine analysis, need to understand (ir)rationality (very hard), and control the error term closely.
- Case I (most likely case): $\pi^{2} /|V| \notin \mathbb{Q}$. We prove there is an infinite sequence of integer "near roots" which would "mess up" the sign pattern.
- Up to 5 million coefficients (715 sign pattern failures), all of our integers are within 2 of the conjectural infinite sequence.
- Milnor $\Longrightarrow|V|=\frac{9 \sqrt{3} \zeta_{Q(\sqrt{-3})}(2)}{16 \pi^{2}}$.

More on these sorts of constants

- Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2 n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2 k N} \mathbb{Q}$ for $n \in \mathbb{N}, K$ totally real.

More on these sorts of constants

- Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2 n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2 k N_{\mathbb{Q}}}$ for $n \in \mathbb{N}, K$ totally real.
- Zagier: $\zeta_{K}(2)$ for arbitrary number fields represented via powers of $\pi, \sqrt{\operatorname{disc}(K)}$ and integrals of the shape

$$
A(x)=\int_{0}^{x} \frac{1}{1+t^{2}} \log \frac{4}{1+t^{2}} d t
$$

More on these sorts of constants

- Siegel-Klingen: Used Hilbert modular forms to show that $\zeta_{K}(2 n) \in \sqrt{|\operatorname{disc}(K)|} \pi^{2 k N_{\mathbb{Q}}}$ for $n \in \mathbb{N}, K$ totally real.
- Zagier: $\zeta_{K}(2)$ for arbitrary number fields represented via powers of $\pi, \sqrt{\operatorname{disc}(K)}$ and integrals of the shape

$$
A(x)=\int_{0}^{x} \frac{1}{1+t^{2}} \log \frac{4}{1+t^{2}} d t
$$

- Is this a hint of a modular object involving $\mathbb{Q}(\sqrt{-3})$???

Takeaways

- We have a novel method for analyzing Nahm-type sums.

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient.

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking.

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."
- We prove, or at least "explain" modulo hard irrationality questions, the conjectures of Andrews on V_{1}.

Takeaways

- We have a novel method for analyzing Nahm-type sums. Previous methods using Euler-Maclaurin/Poisson summation not sufficient. We modify a contour integral of Watson.
- Andrews' intuition and our results imply that there could be deep modular arithmetic lurking. Modular forms tend to leave their "fingerprints."
- We prove, or at least "explain" modulo hard irrationality questions, the conjectures of Andrews on V_{1}. There are additional functions with similar conjectures in his paper!

