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Conjectures of Andrews on partition-theoretic q-series

Questions of Andrews

1986 Monthly: Andrews posed conjectures from experiments.

In Ramanujan’s Lost Notebook: ((a; q)n :=
∏n−1

j=0 (1− aqj)):

σ(q) :=
∑
n≥0

q
n(n+1)

2

(−q; q)n
=:
∑
n≥0

S(n)qn

= 1+q−q2+2q3−2q4+q5+q7−2q8+2q10−q12−2q13+O(q14).

Conjecture (Andrews)

The S(n) are zero infinitely often, but lim sup |S(n)| = +∞.

No |S(n)| for n ≤ 1600 is ≥ 4, but term can exceed 1013.
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What is going on?

These strange numerical phenomena are a hint of structure.

Andrews-Dyson-Hickerson: The conjecture is true, ties
coefficients to arithmetic in Q(

√
6).

Generating function version: indefinite theta function

qσ(q24) =
∑

a>6|b|

(
12

a

)
(−1)bqa

2−24b2 .
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Conjectures of Andrews on partition-theoretic q-series

Even deeper structure

Cohen: σ has a friend,

σ∗(q) = −2
∑
n≥0

qn+1(q2, q2)n.

Together, σ, σ∗ encode a Maass waveform.

Zwegers: These are analogues of the mock theta functions in
his thesis; give“mock Maass theta functions.”Mock theta
functions also discovered “experimentally” by Ramanujan.

Zagier: These are period functions of the Maass waveform,
and give quantum modular forms.
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Other functions

Another function from the Lost Notebook:

v1(q) :=
∑
n≥0

q
n(n+1)

2

(−q2; q2)n
=:
∑
n≥0

V1(n)qn.
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Other conjectures

Conjecture (Andrews)

We have that |V1(n)| → ∞ as n→∞ away from set of density 0.

Remark

Andrews’ original conj. didn’t include the set of density 0 condn.

Conjecture (Andrews)

For almost all n, V1(n), V1(n + 1), V1(n + 2) and V1(n + 3) are
two positive and two negative numbers.
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Main Result

Theorem (Folsom, Males, R., Storzer (2023))

The twos conjectures of Andrews above are true.
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Asymptotics near roots of unity ζ = e(α) of order m

Theorem (Folsom, Males, R., Storzer (2023))

1 If 4 - m, then v1(ζe−z) = O(1) as z → 0.

2 If 4|m, then as z → 0,

v1(ζe−z) =e
16V
zm2

√
2πi

z

(
γ+(α) + O(|z |)

)
+e

−16V
zm2

√
2πi

−z

(
γ−(α) + O(|z |)

)
.

Here using Bloch-Wigner dilogarithm: V = D(e(1/6)) i
8 ,

gamma numbers e.g.:γ+ := γ+(1/4) = γ−(3/4) = 1

2 4
√

3(2−
√
3)

and

γ− := γ−(1/4) = γ+(3/4) = 1

2 4
√

3(2+
√
3)
.



Conjectures of Andrews on partition-theoretic q-series

Asymptotics near roots of unity ζ = e(α) of order m

Theorem (Folsom, Males, R., Storzer (2023))

1 If 4 - m, then v1(ζe−z) = O(1) as z → 0.

2 If 4|m, then as z → 0,

v1(ζe−z) =e
16V
zm2

√
2πi

z

(
γ+(α) + O(|z |)

)
+e

−16V
zm2

√
2πi

−z

(
γ−(α) + O(|z |)

)
.

Here using Bloch-Wigner dilogarithm: V = D(e(1/6)) i
8 ,

gamma numbers e.g.:γ+ := γ+(1/4) = γ−(3/4) = 1

2 4
√

3(2−
√
3)

and

γ− := γ−(1/4) = γ+(3/4) = 1

2 4
√

3(2+
√
3)
.



Conjectures of Andrews on partition-theoretic q-series

Asymptotics near roots of unity ζ = e(α) of order m

Theorem (Folsom, Males, R., Storzer (2023))

1 If 4 - m, then v1(ζe−z) = O(1) as z → 0.

2 If 4|m, then as z → 0,

v1(ζe−z) =e
16V
zm2

√
2πi

z

(
γ+(α) + O(|z |)

)
+e

−16V
zm2

√
2πi

−z

(
γ−(α) + O(|z |)

)
.

Here using Bloch-Wigner dilogarithm: V = D(e(1/6)) i
8 ,

gamma numbers e.g.:

γ+ := γ+(1/4) = γ−(3/4) = 1

2 4
√

3(2−
√
3)

and

γ− := γ−(1/4) = γ+(3/4) = 1

2 4
√

3(2+
√
3)
.



Conjectures of Andrews on partition-theoretic q-series

Asymptotics near roots of unity ζ = e(α) of order m

Theorem (Folsom, Males, R., Storzer (2023))

1 If 4 - m, then v1(ζe−z) = O(1) as z → 0.

2 If 4|m, then as z → 0,

v1(ζe−z) =e
16V
zm2

√
2πi

z

(
γ+(α) + O(|z |)

)
+e

−16V
zm2

√
2πi

−z

(
γ−(α) + O(|z |)

)
.

Here using Bloch-Wigner dilogarithm: V = D(e(1/6)) i
8 ,

gamma numbers e.g.:γ+ := γ+(1/4) = γ−(3/4) = 1

2 4
√

3(2−
√
3)

and

γ− := γ−(1/4) = γ+(3/4) = 1

2 4
√

3(2+
√
3)
.



Conjectures of Andrews on partition-theoretic q-series

“Plugging into” Wright’s Circle Method

Theorem (Folsom, Males, R., Storzer (2023))

As n→∞ we have

V1(n) =(−1)b
n
2
c e
√

2|V |n
√
n

(γ+ + (−1)nγ−)

×
(

cos(
√

2|V |n)− (−1)n sin(
√

2|V |n)
)(

1 + O
(
n−

1
2

))
+ O

(
n−

1
2 e

√
|V |n
2

)
.
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Sign pattern explanation (Conjecture 2)

Asymptotics for V1(n) reduce us to study signs of

(−1)b
n
2
c
(

cos
(√

2|V |n
)

+ (−1)n+1 sin
(√

2|V |n
))

.

The sign behavior of (−1)b
n
2
c for n (mod 4) is clear.Thus, its

enough to study the signs of

cos
(√

2|V |n
)

+ (−1)n+1 sin
(√

2|V |n
)

For large n, values cos(
√

2|V |(n + j)) (resp.
sin(
√

2|V |(n + j))) for j ∈ {0, 1, 2, 3} are close.

Main term “wins” if not “very” close to root of
cos(x)± sin(x). Erdös-Turán+δ =⇒ fails �

√
X of time.
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Other conjectures for V1(n)

Conjecture (Andrews)

For n ≥ 5 there is an infinite sequence
N5 = 293,N6 = 410,N7 = 545,N8 = 702, . . . ,Nn ≥ 10n2, . . . such
that V1(Nn),V1(Nn + 1),V1(Nn + 2) all have the same sign.

Conjecture (Andrews)

The numbers |V1(Nn)|, |V1(Nn + 1)|, |V1(Nn + 2)| contain a local
minimum of the sequence |V1(j)|.
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Diophantine Analysis

Conjecture 4 seems to be explained by Conj. 3 + our
asymptotic for v1(n).

The “bad numbers” in Conjecture 3 correspond to being close
to a root of cos(x)± sin(x).

To do Diophantine analysis, need to understand (ir)rationality
(very hard), and control the error term closely.

Case I (most likely case): π2/|V | 6∈ Q.We prove there is an
infinite sequence of integer “near roots” which would “mess
up” the sign pattern.

Up to 5 million coefficients (715 sign pattern failures), all of
our integers are within 2 of the conjectural infinite sequence.

Milnor =⇒ |V | =
9
√
3ζQ(

√
−3)(2)

16π2 .
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More on these sorts of constants

Siegel-Klingen: Used Hilbert modular forms to show that
ζK (2n) ∈

√
| disc(K )|π2kNQ for n ∈ N, K totally real.

Zagier: ζK (2) for arbitrary number fields represented via
powers of π,

√
disc(K ) and integrals of the shape

A(x) =

∫ x

0

1

1 + t2
log

4

1 + t2
dt.

Is this a hint of a modular object involving Q(
√
−3)???
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Takeaways

We have a novel method for analyzing Nahm-type sums.

Previous methods using Euler-Maclaurin/Poisson summation
not sufficient. We modify a contour integral of Watson.

Andrews’ intuition and our results imply that there could be
deep modular arithmetic lurking. Modular forms tend to leave
their “fingerprints.”

We prove, or at least “explain” modulo hard irrationality
questions, the conjectures of Andrews on V1. There are
additional functions with similar conjectures in his paper!
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